Loading…
Quantitative and Qualitative Analysis of Multicomponent Gas Using Sensor Array
The gas sensor array has long been a major tool for measuring gas due to its high sensitivity, quick response, and low power consumption. This goal, however, faces a difficult challenge because of the cross-sensitivity of the gas sensor. This paper presents a novel gas mixture analysis method for ga...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2019-09, Vol.19 (18), p.3917 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The gas sensor array has long been a major tool for measuring gas due to its high sensitivity, quick response, and low power consumption. This goal, however, faces a difficult challenge because of the cross-sensitivity of the gas sensor. This paper presents a novel gas mixture analysis method for gas sensor array applications. The features extracted from the raw data utilizing principal component analysis (PCA) were used to complete random forest (RF) modeling, which enabled qualitative identification. Support vector regression (SVR), optimized by the particle swarm optimization (PSO) algorithm, was used to select hyperparameters
and
to establish the optimal regression model for the purpose of quantitative analysis. Utilizing the dataset, we evaluated the effectiveness of our approach. Compared with logistic regression (LR) and support vector machine (SVM), the average recognition rate of PCA combined with RF was the highest (97%). The fitting effect of SVR optimized by PSO for gas concentration was better than that of SVR and solved the problem of hyperparameters selection. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s19183917 |