Loading…
The Role of Oxidative Stress in the Development of Systemic Sclerosis Related Vasculopathy
Systemic sclerosis (SSc) is a rare connective tissue disease characterized by autoimmunity, vasculopathy, and progressive fibrosis typically affecting multiple organs including the skin. SSc often is a lethal disorder, because effective disease-modifying treatment still remains unavailable. Vasculop...
Saved in:
Published in: | Frontiers in physiology 2018-08, Vol.9, p.1177-1177 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c528t-ed9e4db608a97ac52862e5d90690dada0758a0adc8551c5933bd9078c72367963 |
---|---|
cites | cdi_FETCH-LOGICAL-c528t-ed9e4db608a97ac52862e5d90690dada0758a0adc8551c5933bd9078c72367963 |
container_end_page | 1177 |
container_issue | |
container_start_page | 1177 |
container_title | Frontiers in physiology |
container_volume | 9 |
creator | Abdulle, Amaal E Diercks, Gilles F H Feelisch, Martin Mulder, Douwe J van Goor, Harry |
description | Systemic sclerosis (SSc) is a rare connective tissue disease characterized by autoimmunity, vasculopathy, and progressive fibrosis typically affecting multiple organs including the skin. SSc often is a lethal disorder, because effective disease-modifying treatment still remains unavailable. Vasculopathy with endothelial dysfunction, perivascular infiltration of mononuclear cells, vascular wall remodeling and rarefaction of capillaries is the hallmark of the disease. Most patients present with vasospastic attacks of the digital arteries referred to as 'Raynaud's phenomenon,' which is often an indication of an underlying widespread vasculopathy. Although autoimmune responses and inflammation are both found to play an important role in the pathogenesis of this vasculopathy, no definite initiating factors have been identified. Recently, several studies have underlined the potential role of oxidative stress in the pathogenesis of SSc vasculopathy thereby proposing a new aspect in the pathogenesis of this disease. For instance, circulating levels of reactive oxygen species (ROS) related markers have been found to correlate with SSc vasculopathy, the formation of fibrosis and the production of autoantibodies. Excess ROS formation is well-known to lead to endothelial cell (EC) injury and vascular complications. Collectively, these findings suggest a potential role of ROS in the initiation and progression of SSc vasculopathy. In this review, we present the background of oxidative stress related processes (e.g., EC injury, autoimmunity, inflammation, and vascular wall remodeling) that may contribute to SSc vasculopathy. Finally, we describe the use of oxidative stress related read-outs as clinical biomarkers of disease activity and evaluate potential anti-oxidative strategies in SSc. |
doi_str_mv | 10.3389/fphys.2018.01177 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_aeab8fc101d24a7c9f51c0102eb3c32a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_aeab8fc101d24a7c9f51c0102eb3c32a</doaj_id><sourcerecordid>2101921158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-ed9e4db608a97ac52862e5d90690dada0758a0adc8551c5933bd9078c72367963</originalsourceid><addsrcrecordid>eNpVkU1rGzEQhpfS0oQ0956Kjr3YHUm7K-lSKOlXIBCI01J6EbPSbKywa7kr2dT_vrKdhkQXiZl3npnRW1VvOcyl1OZDv17u0lwA13PgXKkX1Slv23oGtfj18sn7pDpP6R7KqUEA8NfViQRuVAvitPp9uyR2EwdisWfXf4PHHLbEFnmilFhYsVzyn2lLQ1yPtMp72WKXMo3BsYUbaIopJHZDA2by7CcmtylSzMvdm-pVj0Oi84f7rPrx9cvtxffZ1fW3y4tPVzPXCJ1n5A3VvmtBo1G4j7WCGm-gNeDRI6hGI6B3umm4a4yUXUkq7ZSQrTKtPKsuj1wf8d6upzDitLMRgz0E4nRnccqhzGqRsNO948C9qFE50xckcBDUSScFFtbHI2u96Ubyrmw84fAM-jyzCkt7F7e2LQ5IYwrg_QNgin82lLIdQ3I0DLiiuElWlN5GcN7oIoWj1JU_TBP1j2042L3D9uCw3TtsDw6XkndPx3ss-O-n_AdIg6P9</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2101921158</pqid></control><display><type>article</type><title>The Role of Oxidative Stress in the Development of Systemic Sclerosis Related Vasculopathy</title><source>PubMed Central</source><creator>Abdulle, Amaal E ; Diercks, Gilles F H ; Feelisch, Martin ; Mulder, Douwe J ; van Goor, Harry</creator><creatorcontrib>Abdulle, Amaal E ; Diercks, Gilles F H ; Feelisch, Martin ; Mulder, Douwe J ; van Goor, Harry</creatorcontrib><description>Systemic sclerosis (SSc) is a rare connective tissue disease characterized by autoimmunity, vasculopathy, and progressive fibrosis typically affecting multiple organs including the skin. SSc often is a lethal disorder, because effective disease-modifying treatment still remains unavailable. Vasculopathy with endothelial dysfunction, perivascular infiltration of mononuclear cells, vascular wall remodeling and rarefaction of capillaries is the hallmark of the disease. Most patients present with vasospastic attacks of the digital arteries referred to as 'Raynaud's phenomenon,' which is often an indication of an underlying widespread vasculopathy. Although autoimmune responses and inflammation are both found to play an important role in the pathogenesis of this vasculopathy, no definite initiating factors have been identified. Recently, several studies have underlined the potential role of oxidative stress in the pathogenesis of SSc vasculopathy thereby proposing a new aspect in the pathogenesis of this disease. For instance, circulating levels of reactive oxygen species (ROS) related markers have been found to correlate with SSc vasculopathy, the formation of fibrosis and the production of autoantibodies. Excess ROS formation is well-known to lead to endothelial cell (EC) injury and vascular complications. Collectively, these findings suggest a potential role of ROS in the initiation and progression of SSc vasculopathy. In this review, we present the background of oxidative stress related processes (e.g., EC injury, autoimmunity, inflammation, and vascular wall remodeling) that may contribute to SSc vasculopathy. Finally, we describe the use of oxidative stress related read-outs as clinical biomarkers of disease activity and evaluate potential anti-oxidative strategies in SSc.</description><identifier>ISSN: 1664-042X</identifier><identifier>EISSN: 1664-042X</identifier><identifier>DOI: 10.3389/fphys.2018.01177</identifier><identifier>PMID: 30197602</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>biomarker ; development ; intervention ; Physiology ; reactive oxygen species ; systemic sclerosis ; vasculopathy</subject><ispartof>Frontiers in physiology, 2018-08, Vol.9, p.1177-1177</ispartof><rights>Copyright © 2018 Abdulle, Diercks, Feelisch, Mulder and van Goor. 2018 Abdulle, Diercks, Feelisch, Mulder and van Goor</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-ed9e4db608a97ac52862e5d90690dada0758a0adc8551c5933bd9078c72367963</citedby><cites>FETCH-LOGICAL-c528t-ed9e4db608a97ac52862e5d90690dada0758a0adc8551c5933bd9078c72367963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6117399/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6117399/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30197602$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abdulle, Amaal E</creatorcontrib><creatorcontrib>Diercks, Gilles F H</creatorcontrib><creatorcontrib>Feelisch, Martin</creatorcontrib><creatorcontrib>Mulder, Douwe J</creatorcontrib><creatorcontrib>van Goor, Harry</creatorcontrib><title>The Role of Oxidative Stress in the Development of Systemic Sclerosis Related Vasculopathy</title><title>Frontiers in physiology</title><addtitle>Front Physiol</addtitle><description>Systemic sclerosis (SSc) is a rare connective tissue disease characterized by autoimmunity, vasculopathy, and progressive fibrosis typically affecting multiple organs including the skin. SSc often is a lethal disorder, because effective disease-modifying treatment still remains unavailable. Vasculopathy with endothelial dysfunction, perivascular infiltration of mononuclear cells, vascular wall remodeling and rarefaction of capillaries is the hallmark of the disease. Most patients present with vasospastic attacks of the digital arteries referred to as 'Raynaud's phenomenon,' which is often an indication of an underlying widespread vasculopathy. Although autoimmune responses and inflammation are both found to play an important role in the pathogenesis of this vasculopathy, no definite initiating factors have been identified. Recently, several studies have underlined the potential role of oxidative stress in the pathogenesis of SSc vasculopathy thereby proposing a new aspect in the pathogenesis of this disease. For instance, circulating levels of reactive oxygen species (ROS) related markers have been found to correlate with SSc vasculopathy, the formation of fibrosis and the production of autoantibodies. Excess ROS formation is well-known to lead to endothelial cell (EC) injury and vascular complications. Collectively, these findings suggest a potential role of ROS in the initiation and progression of SSc vasculopathy. In this review, we present the background of oxidative stress related processes (e.g., EC injury, autoimmunity, inflammation, and vascular wall remodeling) that may contribute to SSc vasculopathy. Finally, we describe the use of oxidative stress related read-outs as clinical biomarkers of disease activity and evaluate potential anti-oxidative strategies in SSc.</description><subject>biomarker</subject><subject>development</subject><subject>intervention</subject><subject>Physiology</subject><subject>reactive oxygen species</subject><subject>systemic sclerosis</subject><subject>vasculopathy</subject><issn>1664-042X</issn><issn>1664-042X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1rGzEQhpfS0oQ0956Kjr3YHUm7K-lSKOlXIBCI01J6EbPSbKywa7kr2dT_vrKdhkQXiZl3npnRW1VvOcyl1OZDv17u0lwA13PgXKkX1Slv23oGtfj18sn7pDpP6R7KqUEA8NfViQRuVAvitPp9uyR2EwdisWfXf4PHHLbEFnmilFhYsVzyn2lLQ1yPtMp72WKXMo3BsYUbaIopJHZDA2by7CcmtylSzMvdm-pVj0Oi84f7rPrx9cvtxffZ1fW3y4tPVzPXCJ1n5A3VvmtBo1G4j7WCGm-gNeDRI6hGI6B3umm4a4yUXUkq7ZSQrTKtPKsuj1wf8d6upzDitLMRgz0E4nRnccqhzGqRsNO948C9qFE50xckcBDUSScFFtbHI2u96Ubyrmw84fAM-jyzCkt7F7e2LQ5IYwrg_QNgin82lLIdQ3I0DLiiuElWlN5GcN7oIoWj1JU_TBP1j2042L3D9uCw3TtsDw6XkndPx3ss-O-n_AdIg6P9</recordid><startdate>20180824</startdate><enddate>20180824</enddate><creator>Abdulle, Amaal E</creator><creator>Diercks, Gilles F H</creator><creator>Feelisch, Martin</creator><creator>Mulder, Douwe J</creator><creator>van Goor, Harry</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20180824</creationdate><title>The Role of Oxidative Stress in the Development of Systemic Sclerosis Related Vasculopathy</title><author>Abdulle, Amaal E ; Diercks, Gilles F H ; Feelisch, Martin ; Mulder, Douwe J ; van Goor, Harry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-ed9e4db608a97ac52862e5d90690dada0758a0adc8551c5933bd9078c72367963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>biomarker</topic><topic>development</topic><topic>intervention</topic><topic>Physiology</topic><topic>reactive oxygen species</topic><topic>systemic sclerosis</topic><topic>vasculopathy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdulle, Amaal E</creatorcontrib><creatorcontrib>Diercks, Gilles F H</creatorcontrib><creatorcontrib>Feelisch, Martin</creatorcontrib><creatorcontrib>Mulder, Douwe J</creatorcontrib><creatorcontrib>van Goor, Harry</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdulle, Amaal E</au><au>Diercks, Gilles F H</au><au>Feelisch, Martin</au><au>Mulder, Douwe J</au><au>van Goor, Harry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of Oxidative Stress in the Development of Systemic Sclerosis Related Vasculopathy</atitle><jtitle>Frontiers in physiology</jtitle><addtitle>Front Physiol</addtitle><date>2018-08-24</date><risdate>2018</risdate><volume>9</volume><spage>1177</spage><epage>1177</epage><pages>1177-1177</pages><issn>1664-042X</issn><eissn>1664-042X</eissn><abstract>Systemic sclerosis (SSc) is a rare connective tissue disease characterized by autoimmunity, vasculopathy, and progressive fibrosis typically affecting multiple organs including the skin. SSc often is a lethal disorder, because effective disease-modifying treatment still remains unavailable. Vasculopathy with endothelial dysfunction, perivascular infiltration of mononuclear cells, vascular wall remodeling and rarefaction of capillaries is the hallmark of the disease. Most patients present with vasospastic attacks of the digital arteries referred to as 'Raynaud's phenomenon,' which is often an indication of an underlying widespread vasculopathy. Although autoimmune responses and inflammation are both found to play an important role in the pathogenesis of this vasculopathy, no definite initiating factors have been identified. Recently, several studies have underlined the potential role of oxidative stress in the pathogenesis of SSc vasculopathy thereby proposing a new aspect in the pathogenesis of this disease. For instance, circulating levels of reactive oxygen species (ROS) related markers have been found to correlate with SSc vasculopathy, the formation of fibrosis and the production of autoantibodies. Excess ROS formation is well-known to lead to endothelial cell (EC) injury and vascular complications. Collectively, these findings suggest a potential role of ROS in the initiation and progression of SSc vasculopathy. In this review, we present the background of oxidative stress related processes (e.g., EC injury, autoimmunity, inflammation, and vascular wall remodeling) that may contribute to SSc vasculopathy. Finally, we describe the use of oxidative stress related read-outs as clinical biomarkers of disease activity and evaluate potential anti-oxidative strategies in SSc.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>30197602</pmid><doi>10.3389/fphys.2018.01177</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1664-042X |
ispartof | Frontiers in physiology, 2018-08, Vol.9, p.1177-1177 |
issn | 1664-042X 1664-042X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_aeab8fc101d24a7c9f51c0102eb3c32a |
source | PubMed Central |
subjects | biomarker development intervention Physiology reactive oxygen species systemic sclerosis vasculopathy |
title | The Role of Oxidative Stress in the Development of Systemic Sclerosis Related Vasculopathy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A21%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20Oxidative%20Stress%20in%20the%20Development%20of%20Systemic%20Sclerosis%20Related%20Vasculopathy&rft.jtitle=Frontiers%20in%20physiology&rft.au=Abdulle,%20Amaal%20E&rft.date=2018-08-24&rft.volume=9&rft.spage=1177&rft.epage=1177&rft.pages=1177-1177&rft.issn=1664-042X&rft.eissn=1664-042X&rft_id=info:doi/10.3389/fphys.2018.01177&rft_dat=%3Cproquest_doaj_%3E2101921158%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c528t-ed9e4db608a97ac52862e5d90690dada0758a0adc8551c5933bd9078c72367963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2101921158&rft_id=info:pmid/30197602&rfr_iscdi=true |