Loading…
Cyanobacteria bloom: selective filter for zooplankton?
The Ibirité reservoir is an urban and eutrophic environment, with regular occurrences of cyanobacteria blooms. The reservoir is warm monomict and remains stratified most of the year, circulating in the dry season (winter). During the hydrological cycle of October/07 to October/08 there were four sce...
Saved in:
Published in: | Brazilian journal of biology 2015-03, Vol.75 (1), p.165-174 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Ibirité reservoir is an urban and eutrophic environment, with regular occurrences of cyanobacteria blooms. The reservoir is warm monomict and remains stratified most of the year, circulating in the dry season (winter). During the hydrological cycle of October/07 to October/08 there were four scenarios with different environmental conditions, which influenced the structure of the zooplankton community, as confirmed in a previous study. Changes in the zooplankton community structure between the scenarios were studied, aiming at analyzing the stability and persistence of this community. The Spearman's coefficient of correlation was used to measure the stability; the persistence was evaluated through a cluster analysis and changes in community composition were estimated by the "temporal" β diversity index. Considering the distribution patterns of abundance, the community was stable only in the transition between scenarios 1 and 2 (n = 30, r = 0.71, p = 0.00001), when there were no cyanobacteria blooms. The persistence of zooplankton between the scenarios was low, showing a distinct species composition for each scenario. The highest variations in species composition, observed by the values of temporal β diversity index, were the transitions between scenarios 3-0 (1.45) and 0-1 (1.05), and the lowest variations occurred in the transition between scenarios 1-2 (0.57). The results suggest that the cyanobacteria blooms at Ibirité reservoir are be acting as "selective filters", and are, thus, disturbances with sufficient ability to change the structure of the zooplankton community. |
---|---|
ISSN: | 1519-6984 1678-4375 1678-4375 1519-6984 |
DOI: | 10.1590/1519-6984.10013 |