Loading…

Optimization of the ANNs Predictive Capability Using the Taguchi Approach: A Case Study

Artificial neural networks (ANNs) are a valid alternative predictive method to the traditional statistical techniques currently used in many research fields where a massive amount of data is challenging to manage. In environmental analysis, ANNs can analyze pollution sources in large areas, estimati...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2021-04, Vol.9 (7), p.766
Main Authors: Manni, Andrea, Saviano, Giovanna, Bonelli, Maria Grazia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-4feee5cace69730f14daa92ace4bd2b5f29337dc0d77d1aa71f3a46ec062bd4f3
cites cdi_FETCH-LOGICAL-c364t-4feee5cace69730f14daa92ace4bd2b5f29337dc0d77d1aa71f3a46ec062bd4f3
container_end_page
container_issue 7
container_start_page 766
container_title Mathematics (Basel)
container_volume 9
creator Manni, Andrea
Saviano, Giovanna
Bonelli, Maria Grazia
description Artificial neural networks (ANNs) are a valid alternative predictive method to the traditional statistical techniques currently used in many research fields where a massive amount of data is challenging to manage. In environmental analysis, ANNs can analyze pollution sources in large areas, estimating difficult and expensive to detect contaminants from other easily measurable pollutants, especially for screening procedures. In this study, organic micropollutants have been predicted from heavy metals concentration using ANNs. Sampling was performed in an agricultural field where organic and inorganic contaminants concentrations are beyond the legal limits. A critical problem of a neural network design is to select its parametric topology, which can prejudice the reliability of the model. Therefore, it is very important to assess the performance of ANNs when applying different types of parameters of the net. In this work, based on Taguchi L12 orthogonal array, turning experiments were conducted to identify the best parametric set of an ANNs design, considering different combinations of sample number, scaling, training rate, activation functions, number of hidden layers, and epochs. The composite desirability value for the multi-response variables has been obtained through the desirability function analysis (DFA). The parameters’ optimum levels have been identified using this methodology.
doi_str_mv 10.3390/math9070766
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_aedb44ebf5cb4da784464e62c2b73094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_aedb44ebf5cb4da784464e62c2b73094</doaj_id><sourcerecordid>2548981570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-4feee5cace69730f14daa92ace4bd2b5f29337dc0d77d1aa71f3a46ec062bd4f3</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXUTBUnvyDwQ8SjWbZDeNt6X4UShWsMVjmM1HN6Xtrkkq1F9vbEU6l5l5PN6b4WXZdY7vKBX4fgOxEZhjXpZnWY8Qwoc84ecn82U2CGGFU4mcjpjoZR-zLrqN-4bo2i1qLYqNQdXra0Bv3minovsyaAwd1G7t4h4tgtsuD6Q5LHeqcajqOt-Cah5QlYjBoPe40_ur7MLCOpjBX-9ni6fH-fhlOJ09T8bVdKhoyeKQWWNMoUCZUnCKbc40gCBpZ7UmdWGJoJRrhTXnOgfguaXASqNwSWrNLO1nk6OubmElO-824PeyBScPQOuXEnx0am0kGF0zZmpbqDrZ8BFjJTMlUaRO1oIlrZujVnroc2dClKt257fpfEkKNhKjvOA4sW6PLOXbELyx_645lr9ByJMg6A-W-Xup</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548981570</pqid></control><display><type>article</type><title>Optimization of the ANNs Predictive Capability Using the Taguchi Approach: A Case Study</title><source>Publicly Available Content Database</source><creator>Manni, Andrea ; Saviano, Giovanna ; Bonelli, Maria Grazia</creator><creatorcontrib>Manni, Andrea ; Saviano, Giovanna ; Bonelli, Maria Grazia</creatorcontrib><description>Artificial neural networks (ANNs) are a valid alternative predictive method to the traditional statistical techniques currently used in many research fields where a massive amount of data is challenging to manage. In environmental analysis, ANNs can analyze pollution sources in large areas, estimating difficult and expensive to detect contaminants from other easily measurable pollutants, especially for screening procedures. In this study, organic micropollutants have been predicted from heavy metals concentration using ANNs. Sampling was performed in an agricultural field where organic and inorganic contaminants concentrations are beyond the legal limits. A critical problem of a neural network design is to select its parametric topology, which can prejudice the reliability of the model. Therefore, it is very important to assess the performance of ANNs when applying different types of parameters of the net. In this work, based on Taguchi L12 orthogonal array, turning experiments were conducted to identify the best parametric set of an ANNs design, considering different combinations of sample number, scaling, training rate, activation functions, number of hidden layers, and epochs. The composite desirability value for the multi-response variables has been obtained through the desirability function analysis (DFA). The parameters’ optimum levels have been identified using this methodology.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math9070766</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Artificial intelligence ; artificial neural network ; Artificial neural networks ; Bias ; Design of Experiment (DoE) ; Design of experiments ; environmental pollution ; Food science ; forecasting ; Function analysis ; Genetic algorithms ; Heavy metals ; Inorganic contaminants ; Learning ; Network design ; Neural networks ; Neurons ; Optimization ; Optimization algorithms ; Orthogonal arrays ; Parameter identification ; parametric design ; Parametric statistics ; Pollutants ; Pollution sources ; Reliability analysis ; Taguchi methods ; Topology ; Variables</subject><ispartof>Mathematics (Basel), 2021-04, Vol.9 (7), p.766</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-4feee5cace69730f14daa92ace4bd2b5f29337dc0d77d1aa71f3a46ec062bd4f3</citedby><cites>FETCH-LOGICAL-c364t-4feee5cace69730f14daa92ace4bd2b5f29337dc0d77d1aa71f3a46ec062bd4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548981570/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548981570?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74873</link.rule.ids></links><search><creatorcontrib>Manni, Andrea</creatorcontrib><creatorcontrib>Saviano, Giovanna</creatorcontrib><creatorcontrib>Bonelli, Maria Grazia</creatorcontrib><title>Optimization of the ANNs Predictive Capability Using the Taguchi Approach: A Case Study</title><title>Mathematics (Basel)</title><description>Artificial neural networks (ANNs) are a valid alternative predictive method to the traditional statistical techniques currently used in many research fields where a massive amount of data is challenging to manage. In environmental analysis, ANNs can analyze pollution sources in large areas, estimating difficult and expensive to detect contaminants from other easily measurable pollutants, especially for screening procedures. In this study, organic micropollutants have been predicted from heavy metals concentration using ANNs. Sampling was performed in an agricultural field where organic and inorganic contaminants concentrations are beyond the legal limits. A critical problem of a neural network design is to select its parametric topology, which can prejudice the reliability of the model. Therefore, it is very important to assess the performance of ANNs when applying different types of parameters of the net. In this work, based on Taguchi L12 orthogonal array, turning experiments were conducted to identify the best parametric set of an ANNs design, considering different combinations of sample number, scaling, training rate, activation functions, number of hidden layers, and epochs. The composite desirability value for the multi-response variables has been obtained through the desirability function analysis (DFA). The parameters’ optimum levels have been identified using this methodology.</description><subject>Artificial intelligence</subject><subject>artificial neural network</subject><subject>Artificial neural networks</subject><subject>Bias</subject><subject>Design of Experiment (DoE)</subject><subject>Design of experiments</subject><subject>environmental pollution</subject><subject>Food science</subject><subject>forecasting</subject><subject>Function analysis</subject><subject>Genetic algorithms</subject><subject>Heavy metals</subject><subject>Inorganic contaminants</subject><subject>Learning</subject><subject>Network design</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Orthogonal arrays</subject><subject>Parameter identification</subject><subject>parametric design</subject><subject>Parametric statistics</subject><subject>Pollutants</subject><subject>Pollution sources</subject><subject>Reliability analysis</subject><subject>Taguchi methods</subject><subject>Topology</subject><subject>Variables</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXUTBUnvyDwQ8SjWbZDeNt6X4UShWsMVjmM1HN6Xtrkkq1F9vbEU6l5l5PN6b4WXZdY7vKBX4fgOxEZhjXpZnWY8Qwoc84ecn82U2CGGFU4mcjpjoZR-zLrqN-4bo2i1qLYqNQdXra0Bv3minovsyaAwd1G7t4h4tgtsuD6Q5LHeqcajqOt-Cah5QlYjBoPe40_ur7MLCOpjBX-9ni6fH-fhlOJ09T8bVdKhoyeKQWWNMoUCZUnCKbc40gCBpZ7UmdWGJoJRrhTXnOgfguaXASqNwSWrNLO1nk6OubmElO-824PeyBScPQOuXEnx0am0kGF0zZmpbqDrZ8BFjJTMlUaRO1oIlrZujVnroc2dClKt257fpfEkKNhKjvOA4sW6PLOXbELyx_645lr9ByJMg6A-W-Xup</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Manni, Andrea</creator><creator>Saviano, Giovanna</creator><creator>Bonelli, Maria Grazia</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20210401</creationdate><title>Optimization of the ANNs Predictive Capability Using the Taguchi Approach: A Case Study</title><author>Manni, Andrea ; Saviano, Giovanna ; Bonelli, Maria Grazia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-4feee5cace69730f14daa92ace4bd2b5f29337dc0d77d1aa71f3a46ec062bd4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>artificial neural network</topic><topic>Artificial neural networks</topic><topic>Bias</topic><topic>Design of Experiment (DoE)</topic><topic>Design of experiments</topic><topic>environmental pollution</topic><topic>Food science</topic><topic>forecasting</topic><topic>Function analysis</topic><topic>Genetic algorithms</topic><topic>Heavy metals</topic><topic>Inorganic contaminants</topic><topic>Learning</topic><topic>Network design</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Orthogonal arrays</topic><topic>Parameter identification</topic><topic>parametric design</topic><topic>Parametric statistics</topic><topic>Pollutants</topic><topic>Pollution sources</topic><topic>Reliability analysis</topic><topic>Taguchi methods</topic><topic>Topology</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manni, Andrea</creatorcontrib><creatorcontrib>Saviano, Giovanna</creatorcontrib><creatorcontrib>Bonelli, Maria Grazia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manni, Andrea</au><au>Saviano, Giovanna</au><au>Bonelli, Maria Grazia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of the ANNs Predictive Capability Using the Taguchi Approach: A Case Study</atitle><jtitle>Mathematics (Basel)</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>9</volume><issue>7</issue><spage>766</spage><pages>766-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>Artificial neural networks (ANNs) are a valid alternative predictive method to the traditional statistical techniques currently used in many research fields where a massive amount of data is challenging to manage. In environmental analysis, ANNs can analyze pollution sources in large areas, estimating difficult and expensive to detect contaminants from other easily measurable pollutants, especially for screening procedures. In this study, organic micropollutants have been predicted from heavy metals concentration using ANNs. Sampling was performed in an agricultural field where organic and inorganic contaminants concentrations are beyond the legal limits. A critical problem of a neural network design is to select its parametric topology, which can prejudice the reliability of the model. Therefore, it is very important to assess the performance of ANNs when applying different types of parameters of the net. In this work, based on Taguchi L12 orthogonal array, turning experiments were conducted to identify the best parametric set of an ANNs design, considering different combinations of sample number, scaling, training rate, activation functions, number of hidden layers, and epochs. The composite desirability value for the multi-response variables has been obtained through the desirability function analysis (DFA). The parameters’ optimum levels have been identified using this methodology.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math9070766</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-7390
ispartof Mathematics (Basel), 2021-04, Vol.9 (7), p.766
issn 2227-7390
2227-7390
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_aedb44ebf5cb4da784464e62c2b73094
source Publicly Available Content Database
subjects Artificial intelligence
artificial neural network
Artificial neural networks
Bias
Design of Experiment (DoE)
Design of experiments
environmental pollution
Food science
forecasting
Function analysis
Genetic algorithms
Heavy metals
Inorganic contaminants
Learning
Network design
Neural networks
Neurons
Optimization
Optimization algorithms
Orthogonal arrays
Parameter identification
parametric design
Parametric statistics
Pollutants
Pollution sources
Reliability analysis
Taguchi methods
Topology
Variables
title Optimization of the ANNs Predictive Capability Using the Taguchi Approach: A Case Study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A32%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20the%20ANNs%20Predictive%20Capability%20Using%20the%20Taguchi%20Approach:%20A%20Case%20Study&rft.jtitle=Mathematics%20(Basel)&rft.au=Manni,%20Andrea&rft.date=2021-04-01&rft.volume=9&rft.issue=7&rft.spage=766&rft.pages=766-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math9070766&rft_dat=%3Cproquest_doaj_%3E2548981570%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-4feee5cace69730f14daa92ace4bd2b5f29337dc0d77d1aa71f3a46ec062bd4f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548981570&rft_id=info:pmid/&rfr_iscdi=true