Loading…

Identification of Fractional Models of an Induction Motor with Errors in Variables

The skin effect in modeling an induction motor can be described by fractional differential equations. The existing methods for identifying the parameters of an induction motor with a rotor skin effect suggest the presence of errors only in the output. The presence of errors in measuring currents and...

Full description

Saved in:
Bibliographic Details
Published in:Fractal and fractional 2023-06, Vol.7 (6), p.485
Main Author: Ivanov, Dmitriy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c427t-ea38a6958ad0f2615c41c2299d77f75b559cb20de4eea217ffef2b0efb6a794c3
cites cdi_FETCH-LOGICAL-c427t-ea38a6958ad0f2615c41c2299d77f75b559cb20de4eea217ffef2b0efb6a794c3
container_end_page
container_issue 6
container_start_page 485
container_title Fractal and fractional
container_volume 7
creator Ivanov, Dmitriy
description The skin effect in modeling an induction motor can be described by fractional differential equations. The existing methods for identifying the parameters of an induction motor with a rotor skin effect suggest the presence of errors only in the output. The presence of errors in measuring currents and voltages leads to errors in both input and output signals. Applying standard methods, such as the ordinary least squares method, leads to biased estimates in these types of problems. The study proposes a new method for identifying the parameters of an induction motor in the presence of a skin effect. Estimates of parameters were determined based on generalized total least squares. The simulation results obtained showed the high accuracy of the obtained estimates. The results of this research can be applied in the development of predictive diagnostic systems. This study shows that ordinary least squares parameter estimates can lead to incorrect operation of the fault diagnosis system.
doi_str_mv 10.3390/fractalfract7060485
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_aeef812b54d74d0782a7fe4e87b47a87</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A758283944</galeid><doaj_id>oai_doaj_org_article_aeef812b54d74d0782a7fe4e87b47a87</doaj_id><sourcerecordid>A758283944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-ea38a6958ad0f2615c41c2299d77f75b559cb20de4eea217ffef2b0efb6a794c3</originalsourceid><addsrcrecordid>eNptkU1rGzEQhpfQQkOSX9DLQs529bmSjibEqSEhENpexaw0SmQ2K0eSCf33le1SeghzmOGdmYdh3q77SsmSc0O-hQyuwnRMigxEaHnWnTNJxIJTSj79V3_prkrZEkKYMlwSdd49bTzONYbooMY09yn06wOo1TD1D8njVA4izP1m9vtjo8k15f491pf-NueUSx_n_hfkCOOE5bL7HGAqePU3X3Q_17c_br4v7h_vNjer-4UTTNUFAtcwGKnBk8AGKp2gjjFjvFJByVFK40ZGPApEYFSFgIGNBMM4gDLC8Ytuc-L6BFu7y_EV8m-bINqjkPKzhVyjm9ACYtCUjVJ4JTxRmoEKDazVKBRo1VjXJ9Yup7c9lmq3aZ_bC4plmhlN6KBFm1qepp6hQeMcUm2_auHxNbo0Y4hNXympmeZGHBb4acHlVErG8O9MSuzBPPuBefwPTNaQMQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829801684</pqid></control><display><type>article</type><title>Identification of Fractional Models of an Induction Motor with Errors in Variables</title><source>Publicly Available Content Database</source><creator>Ivanov, Dmitriy</creator><creatorcontrib>Ivanov, Dmitriy</creatorcontrib><description>The skin effect in modeling an induction motor can be described by fractional differential equations. The existing methods for identifying the parameters of an induction motor with a rotor skin effect suggest the presence of errors only in the output. The presence of errors in measuring currents and voltages leads to errors in both input and output signals. Applying standard methods, such as the ordinary least squares method, leads to biased estimates in these types of problems. The study proposes a new method for identifying the parameters of an induction motor in the presence of a skin effect. Estimates of parameters were determined based on generalized total least squares. The simulation results obtained showed the high accuracy of the obtained estimates. The results of this research can be applied in the development of predictive diagnostic systems. This study shows that ordinary least squares parameter estimates can lead to incorrect operation of the fault diagnosis system.</description><identifier>ISSN: 2504-3110</identifier><identifier>EISSN: 2504-3110</identifier><identifier>DOI: 10.3390/fractalfract7060485</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; additive noise ; Circuits ; Conversion ; Diagnostic systems ; Differential equations ; Errors ; errors-in-variables ; Estimates ; Fault diagnosis ; Fractional calculus ; fractional derivative ; Induction electric motors ; induction motor ; Induction motors ; Least squares method ; Mathematical models ; Noise ; Parameter estimation ; Parameter identification ; Skin effect ; total least squares ; Variables</subject><ispartof>Fractal and fractional, 2023-06, Vol.7 (6), p.485</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-ea38a6958ad0f2615c41c2299d77f75b559cb20de4eea217ffef2b0efb6a794c3</citedby><cites>FETCH-LOGICAL-c427t-ea38a6958ad0f2615c41c2299d77f75b559cb20de4eea217ffef2b0efb6a794c3</cites><orcidid>0000-0002-5021-5259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2829801684/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2829801684?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Ivanov, Dmitriy</creatorcontrib><title>Identification of Fractional Models of an Induction Motor with Errors in Variables</title><title>Fractal and fractional</title><description>The skin effect in modeling an induction motor can be described by fractional differential equations. The existing methods for identifying the parameters of an induction motor with a rotor skin effect suggest the presence of errors only in the output. The presence of errors in measuring currents and voltages leads to errors in both input and output signals. Applying standard methods, such as the ordinary least squares method, leads to biased estimates in these types of problems. The study proposes a new method for identifying the parameters of an induction motor in the presence of a skin effect. Estimates of parameters were determined based on generalized total least squares. The simulation results obtained showed the high accuracy of the obtained estimates. The results of this research can be applied in the development of predictive diagnostic systems. This study shows that ordinary least squares parameter estimates can lead to incorrect operation of the fault diagnosis system.</description><subject>Accuracy</subject><subject>additive noise</subject><subject>Circuits</subject><subject>Conversion</subject><subject>Diagnostic systems</subject><subject>Differential equations</subject><subject>Errors</subject><subject>errors-in-variables</subject><subject>Estimates</subject><subject>Fault diagnosis</subject><subject>Fractional calculus</subject><subject>fractional derivative</subject><subject>Induction electric motors</subject><subject>induction motor</subject><subject>Induction motors</subject><subject>Least squares method</subject><subject>Mathematical models</subject><subject>Noise</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Skin effect</subject><subject>total least squares</subject><subject>Variables</subject><issn>2504-3110</issn><issn>2504-3110</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkU1rGzEQhpfQQkOSX9DLQs529bmSjibEqSEhENpexaw0SmQ2K0eSCf33le1SeghzmOGdmYdh3q77SsmSc0O-hQyuwnRMigxEaHnWnTNJxIJTSj79V3_prkrZEkKYMlwSdd49bTzONYbooMY09yn06wOo1TD1D8njVA4izP1m9vtjo8k15f491pf-NueUSx_n_hfkCOOE5bL7HGAqePU3X3Q_17c_br4v7h_vNjer-4UTTNUFAtcwGKnBk8AGKp2gjjFjvFJByVFK40ZGPApEYFSFgIGNBMM4gDLC8Ytuc-L6BFu7y_EV8m-bINqjkPKzhVyjm9ACYtCUjVJ4JTxRmoEKDazVKBRo1VjXJ9Yup7c9lmq3aZ_bC4plmhlN6KBFm1qepp6hQeMcUm2_auHxNbo0Y4hNXympmeZGHBb4acHlVErG8O9MSuzBPPuBefwPTNaQMQ</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Ivanov, Dmitriy</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5021-5259</orcidid></search><sort><creationdate>20230601</creationdate><title>Identification of Fractional Models of an Induction Motor with Errors in Variables</title><author>Ivanov, Dmitriy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-ea38a6958ad0f2615c41c2299d77f75b559cb20de4eea217ffef2b0efb6a794c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>additive noise</topic><topic>Circuits</topic><topic>Conversion</topic><topic>Diagnostic systems</topic><topic>Differential equations</topic><topic>Errors</topic><topic>errors-in-variables</topic><topic>Estimates</topic><topic>Fault diagnosis</topic><topic>Fractional calculus</topic><topic>fractional derivative</topic><topic>Induction electric motors</topic><topic>induction motor</topic><topic>Induction motors</topic><topic>Least squares method</topic><topic>Mathematical models</topic><topic>Noise</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Skin effect</topic><topic>total least squares</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivanov, Dmitriy</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ: Directory of Open Access Journals</collection><jtitle>Fractal and fractional</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivanov, Dmitriy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Fractional Models of an Induction Motor with Errors in Variables</atitle><jtitle>Fractal and fractional</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>7</volume><issue>6</issue><spage>485</spage><pages>485-</pages><issn>2504-3110</issn><eissn>2504-3110</eissn><abstract>The skin effect in modeling an induction motor can be described by fractional differential equations. The existing methods for identifying the parameters of an induction motor with a rotor skin effect suggest the presence of errors only in the output. The presence of errors in measuring currents and voltages leads to errors in both input and output signals. Applying standard methods, such as the ordinary least squares method, leads to biased estimates in these types of problems. The study proposes a new method for identifying the parameters of an induction motor in the presence of a skin effect. Estimates of parameters were determined based on generalized total least squares. The simulation results obtained showed the high accuracy of the obtained estimates. The results of this research can be applied in the development of predictive diagnostic systems. This study shows that ordinary least squares parameter estimates can lead to incorrect operation of the fault diagnosis system.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/fractalfract7060485</doi><orcidid>https://orcid.org/0000-0002-5021-5259</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2504-3110
ispartof Fractal and fractional, 2023-06, Vol.7 (6), p.485
issn 2504-3110
2504-3110
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_aeef812b54d74d0782a7fe4e87b47a87
source Publicly Available Content Database
subjects Accuracy
additive noise
Circuits
Conversion
Diagnostic systems
Differential equations
Errors
errors-in-variables
Estimates
Fault diagnosis
Fractional calculus
fractional derivative
Induction electric motors
induction motor
Induction motors
Least squares method
Mathematical models
Noise
Parameter estimation
Parameter identification
Skin effect
total least squares
Variables
title Identification of Fractional Models of an Induction Motor with Errors in Variables
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A23%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Fractional%20Models%20of%20an%20Induction%20Motor%20with%20Errors%20in%20Variables&rft.jtitle=Fractal%20and%20fractional&rft.au=Ivanov,%20Dmitriy&rft.date=2023-06-01&rft.volume=7&rft.issue=6&rft.spage=485&rft.pages=485-&rft.issn=2504-3110&rft.eissn=2504-3110&rft_id=info:doi/10.3390/fractalfract7060485&rft_dat=%3Cgale_doaj_%3EA758283944%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-ea38a6958ad0f2615c41c2299d77f75b559cb20de4eea217ffef2b0efb6a794c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2829801684&rft_id=info:pmid/&rft_galeid=A758283944&rfr_iscdi=true