Loading…
Identification of Fractional Models of an Induction Motor with Errors in Variables
The skin effect in modeling an induction motor can be described by fractional differential equations. The existing methods for identifying the parameters of an induction motor with a rotor skin effect suggest the presence of errors only in the output. The presence of errors in measuring currents and...
Saved in:
Published in: | Fractal and fractional 2023-06, Vol.7 (6), p.485 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c427t-ea38a6958ad0f2615c41c2299d77f75b559cb20de4eea217ffef2b0efb6a794c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c427t-ea38a6958ad0f2615c41c2299d77f75b559cb20de4eea217ffef2b0efb6a794c3 |
container_end_page | |
container_issue | 6 |
container_start_page | 485 |
container_title | Fractal and fractional |
container_volume | 7 |
creator | Ivanov, Dmitriy |
description | The skin effect in modeling an induction motor can be described by fractional differential equations. The existing methods for identifying the parameters of an induction motor with a rotor skin effect suggest the presence of errors only in the output. The presence of errors in measuring currents and voltages leads to errors in both input and output signals. Applying standard methods, such as the ordinary least squares method, leads to biased estimates in these types of problems. The study proposes a new method for identifying the parameters of an induction motor in the presence of a skin effect. Estimates of parameters were determined based on generalized total least squares. The simulation results obtained showed the high accuracy of the obtained estimates. The results of this research can be applied in the development of predictive diagnostic systems. This study shows that ordinary least squares parameter estimates can lead to incorrect operation of the fault diagnosis system. |
doi_str_mv | 10.3390/fractalfract7060485 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_aeef812b54d74d0782a7fe4e87b47a87</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A758283944</galeid><doaj_id>oai_doaj_org_article_aeef812b54d74d0782a7fe4e87b47a87</doaj_id><sourcerecordid>A758283944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-ea38a6958ad0f2615c41c2299d77f75b559cb20de4eea217ffef2b0efb6a794c3</originalsourceid><addsrcrecordid>eNptkU1rGzEQhpfQQkOSX9DLQs529bmSjibEqSEhENpexaw0SmQ2K0eSCf33le1SeghzmOGdmYdh3q77SsmSc0O-hQyuwnRMigxEaHnWnTNJxIJTSj79V3_prkrZEkKYMlwSdd49bTzONYbooMY09yn06wOo1TD1D8njVA4izP1m9vtjo8k15f491pf-NueUSx_n_hfkCOOE5bL7HGAqePU3X3Q_17c_br4v7h_vNjer-4UTTNUFAtcwGKnBk8AGKp2gjjFjvFJByVFK40ZGPApEYFSFgIGNBMM4gDLC8Ytuc-L6BFu7y_EV8m-bINqjkPKzhVyjm9ACYtCUjVJ4JTxRmoEKDazVKBRo1VjXJ9Yup7c9lmq3aZ_bC4plmhlN6KBFm1qepp6hQeMcUm2_auHxNbo0Y4hNXympmeZGHBb4acHlVErG8O9MSuzBPPuBefwPTNaQMQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829801684</pqid></control><display><type>article</type><title>Identification of Fractional Models of an Induction Motor with Errors in Variables</title><source>Publicly Available Content Database</source><creator>Ivanov, Dmitriy</creator><creatorcontrib>Ivanov, Dmitriy</creatorcontrib><description>The skin effect in modeling an induction motor can be described by fractional differential equations. The existing methods for identifying the parameters of an induction motor with a rotor skin effect suggest the presence of errors only in the output. The presence of errors in measuring currents and voltages leads to errors in both input and output signals. Applying standard methods, such as the ordinary least squares method, leads to biased estimates in these types of problems. The study proposes a new method for identifying the parameters of an induction motor in the presence of a skin effect. Estimates of parameters were determined based on generalized total least squares. The simulation results obtained showed the high accuracy of the obtained estimates. The results of this research can be applied in the development of predictive diagnostic systems. This study shows that ordinary least squares parameter estimates can lead to incorrect operation of the fault diagnosis system.</description><identifier>ISSN: 2504-3110</identifier><identifier>EISSN: 2504-3110</identifier><identifier>DOI: 10.3390/fractalfract7060485</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; additive noise ; Circuits ; Conversion ; Diagnostic systems ; Differential equations ; Errors ; errors-in-variables ; Estimates ; Fault diagnosis ; Fractional calculus ; fractional derivative ; Induction electric motors ; induction motor ; Induction motors ; Least squares method ; Mathematical models ; Noise ; Parameter estimation ; Parameter identification ; Skin effect ; total least squares ; Variables</subject><ispartof>Fractal and fractional, 2023-06, Vol.7 (6), p.485</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-ea38a6958ad0f2615c41c2299d77f75b559cb20de4eea217ffef2b0efb6a794c3</citedby><cites>FETCH-LOGICAL-c427t-ea38a6958ad0f2615c41c2299d77f75b559cb20de4eea217ffef2b0efb6a794c3</cites><orcidid>0000-0002-5021-5259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2829801684/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2829801684?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Ivanov, Dmitriy</creatorcontrib><title>Identification of Fractional Models of an Induction Motor with Errors in Variables</title><title>Fractal and fractional</title><description>The skin effect in modeling an induction motor can be described by fractional differential equations. The existing methods for identifying the parameters of an induction motor with a rotor skin effect suggest the presence of errors only in the output. The presence of errors in measuring currents and voltages leads to errors in both input and output signals. Applying standard methods, such as the ordinary least squares method, leads to biased estimates in these types of problems. The study proposes a new method for identifying the parameters of an induction motor in the presence of a skin effect. Estimates of parameters were determined based on generalized total least squares. The simulation results obtained showed the high accuracy of the obtained estimates. The results of this research can be applied in the development of predictive diagnostic systems. This study shows that ordinary least squares parameter estimates can lead to incorrect operation of the fault diagnosis system.</description><subject>Accuracy</subject><subject>additive noise</subject><subject>Circuits</subject><subject>Conversion</subject><subject>Diagnostic systems</subject><subject>Differential equations</subject><subject>Errors</subject><subject>errors-in-variables</subject><subject>Estimates</subject><subject>Fault diagnosis</subject><subject>Fractional calculus</subject><subject>fractional derivative</subject><subject>Induction electric motors</subject><subject>induction motor</subject><subject>Induction motors</subject><subject>Least squares method</subject><subject>Mathematical models</subject><subject>Noise</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Skin effect</subject><subject>total least squares</subject><subject>Variables</subject><issn>2504-3110</issn><issn>2504-3110</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkU1rGzEQhpfQQkOSX9DLQs529bmSjibEqSEhENpexaw0SmQ2K0eSCf33le1SeghzmOGdmYdh3q77SsmSc0O-hQyuwnRMigxEaHnWnTNJxIJTSj79V3_prkrZEkKYMlwSdd49bTzONYbooMY09yn06wOo1TD1D8njVA4izP1m9vtjo8k15f491pf-NueUSx_n_hfkCOOE5bL7HGAqePU3X3Q_17c_br4v7h_vNjer-4UTTNUFAtcwGKnBk8AGKp2gjjFjvFJByVFK40ZGPApEYFSFgIGNBMM4gDLC8Ytuc-L6BFu7y_EV8m-bINqjkPKzhVyjm9ACYtCUjVJ4JTxRmoEKDazVKBRo1VjXJ9Yup7c9lmq3aZ_bC4plmhlN6KBFm1qepp6hQeMcUm2_auHxNbo0Y4hNXympmeZGHBb4acHlVErG8O9MSuzBPPuBefwPTNaQMQ</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Ivanov, Dmitriy</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5021-5259</orcidid></search><sort><creationdate>20230601</creationdate><title>Identification of Fractional Models of an Induction Motor with Errors in Variables</title><author>Ivanov, Dmitriy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-ea38a6958ad0f2615c41c2299d77f75b559cb20de4eea217ffef2b0efb6a794c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>additive noise</topic><topic>Circuits</topic><topic>Conversion</topic><topic>Diagnostic systems</topic><topic>Differential equations</topic><topic>Errors</topic><topic>errors-in-variables</topic><topic>Estimates</topic><topic>Fault diagnosis</topic><topic>Fractional calculus</topic><topic>fractional derivative</topic><topic>Induction electric motors</topic><topic>induction motor</topic><topic>Induction motors</topic><topic>Least squares method</topic><topic>Mathematical models</topic><topic>Noise</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Skin effect</topic><topic>total least squares</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivanov, Dmitriy</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ: Directory of Open Access Journals</collection><jtitle>Fractal and fractional</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivanov, Dmitriy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Fractional Models of an Induction Motor with Errors in Variables</atitle><jtitle>Fractal and fractional</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>7</volume><issue>6</issue><spage>485</spage><pages>485-</pages><issn>2504-3110</issn><eissn>2504-3110</eissn><abstract>The skin effect in modeling an induction motor can be described by fractional differential equations. The existing methods for identifying the parameters of an induction motor with a rotor skin effect suggest the presence of errors only in the output. The presence of errors in measuring currents and voltages leads to errors in both input and output signals. Applying standard methods, such as the ordinary least squares method, leads to biased estimates in these types of problems. The study proposes a new method for identifying the parameters of an induction motor in the presence of a skin effect. Estimates of parameters were determined based on generalized total least squares. The simulation results obtained showed the high accuracy of the obtained estimates. The results of this research can be applied in the development of predictive diagnostic systems. This study shows that ordinary least squares parameter estimates can lead to incorrect operation of the fault diagnosis system.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/fractalfract7060485</doi><orcidid>https://orcid.org/0000-0002-5021-5259</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2504-3110 |
ispartof | Fractal and fractional, 2023-06, Vol.7 (6), p.485 |
issn | 2504-3110 2504-3110 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_aeef812b54d74d0782a7fe4e87b47a87 |
source | Publicly Available Content Database |
subjects | Accuracy additive noise Circuits Conversion Diagnostic systems Differential equations Errors errors-in-variables Estimates Fault diagnosis Fractional calculus fractional derivative Induction electric motors induction motor Induction motors Least squares method Mathematical models Noise Parameter estimation Parameter identification Skin effect total least squares Variables |
title | Identification of Fractional Models of an Induction Motor with Errors in Variables |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A23%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Fractional%20Models%20of%20an%20Induction%20Motor%20with%20Errors%20in%20Variables&rft.jtitle=Fractal%20and%20fractional&rft.au=Ivanov,%20Dmitriy&rft.date=2023-06-01&rft.volume=7&rft.issue=6&rft.spage=485&rft.pages=485-&rft.issn=2504-3110&rft.eissn=2504-3110&rft_id=info:doi/10.3390/fractalfract7060485&rft_dat=%3Cgale_doaj_%3EA758283944%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-ea38a6958ad0f2615c41c2299d77f75b559cb20de4eea217ffef2b0efb6a794c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2829801684&rft_id=info:pmid/&rft_galeid=A758283944&rfr_iscdi=true |