Loading…

Physiological trade-offs associated with fasting weight loss, resistance to exercise and behavioral traits in farmed gilthead sea bream (Sparus aurata) selected by growth

•Fast-growing families had a higher susceptibility to fasting weight loss.•Selection for fast growth reduced critical swimming in a swim tunnel respirometer.•Low fast-growing families had a more reactive behavior.•Selection by growth tells the trade-offs of aerobic/anaerobic metabolism. Three gilthe...

Full description

Saved in:
Bibliographic Details
Published in:Aquaculture reports 2021-07, Vol.20, p.100645, Article 100645
Main Authors: Perera, Erick, Rosell-Moll, Enrique, Martos-Sitcha, Juan Antonio, Naya-Català, Fernando, Simó-Mirabet, Paula, Calduch-Giner, Josep, Manchado, Manuel, Afonso, Juan Manuel, Pérez-Sánchez, Jaume
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:•Fast-growing families had a higher susceptibility to fasting weight loss.•Selection for fast growth reduced critical swimming in a swim tunnel respirometer.•Low fast-growing families had a more reactive behavior.•Selection by growth tells the trade-offs of aerobic/anaerobic metabolism. Three gilthead sea bream families representative of slow, intermediate and fast heritable growth in the Spanish PROGENSA® selection program were used to uncover the effects of such selection on energy partitioning through measurements of fasting weight loss, swimming performance and behavioral traits in one- and two-year-old fish. Firstly, selection for fast growth significantly increased fasting weight loss and decreased the hormonal ratio of circulating Igf-i/Gh in short-term fasting fish (17 days). This is indicative of a stronger negative energy balance that explains the reduced compensatory growth of fast-growing fish during the subsequent short-term refeeding period (7 days). Selection for fast growth also decreased the critical speed (Ucrit, 6–7 BL s−1) at which fish become exhausted in a swim tunnel respirometer. The maximum metabolic rate (MMR), defined as the maximum rate of oxygen consumption during forced exercise, was almost equal in all fish families though the peak was achieved at a lowest speed in the fast-growing family. Since circulating levels of lactate were also slightly decreased in free-swimming fish of this family group, it appears likely that the relative energy contribution of anaerobic metabolism to physical activity was lowered in genetically fast-growing fish. Selection for heritable growth also altered activity behavior because slow-growing families displayed an anticipatory food response associated with more pronounced daily rhythms of physical activity. Also, respiratory frequency and body weight showed and opposite correlation in slow- and fast-growing free-swimming fish as part of the complex trade-offs of growth, behavior and energy metabolism. Altogether, these results indicate that selective breeding for fast growth might limit the anaerobic fitness that would help to cope with limited oxygen availability in a scenario of climate change.
ISSN:2352-5134
2352-5134
DOI:10.1016/j.aqrep.2021.100645