Loading…
PD-L1 translocation to the plasma membrane enables tumor immune evasion through MIB2 ubiquitination
Programmed death-ligand 1 (PD-L1), a critical immune checkpoint ligand, is a transmembrane protein synthesized in the endoplasmic reticulum of tumor cells and transported to the plasma membrane to interact with programmed death 1 (PD-1) expressed on T cell surface. This interaction delivers coinhibi...
Saved in:
Published in: | The Journal of clinical investigation 2023-02, Vol.133 (3), p.1-15 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c673t-32245c6d22948f4ded5ba5189737bb13f78183966fd0188fb8c4ecd6ce85199f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c673t-32245c6d22948f4ded5ba5189737bb13f78183966fd0188fb8c4ecd6ce85199f3 |
container_end_page | 15 |
container_issue | 3 |
container_start_page | 1 |
container_title | The Journal of clinical investigation |
container_volume | 133 |
creator | Yu, Xinfang Li, Wei Liu, Haidan Wang, Xu Coarfa, Cristian Cheng, Chao Yu, Xinlian Zeng, Zhaoyang Cao, Ya Young, Ken H Li, Yong |
description | Programmed death-ligand 1 (PD-L1), a critical immune checkpoint ligand, is a transmembrane protein synthesized in the endoplasmic reticulum of tumor cells and transported to the plasma membrane to interact with programmed death 1 (PD-1) expressed on T cell surface. This interaction delivers coinhibitory signals to T cells, thereby suppressing their function and allowing evasion of antitumor immunity. Most companion or complementary diagnostic devices for assessing PD-L1 expression levels in tumor cells used in the clinic or in clinical trials require membranous staining. However, the mechanism driving PD-L1 translocation to the plasma membrane after de novo synthesis is poorly understood. Herein, we showed that mind bomb homolog 2 (MIB2) is required for PD-L1 transportation from the trans-Golgi network (TGN) to the plasma membrane of cancer cells. MIB2 deficiency led to fewer PD-L1 proteins on the tumor cell surface and promoted antitumor immunity in mice. Mechanistically, MIB2 catalyzed nonproteolytic K63-linked ubiquitination of PD-L1, facilitating PD-L1 trafficking through Ras-associated binding 8-mediated (RAB8-mediated) exocytosis from the TGN to the plasma membrane, where it bound PD-1 extrinsically to prevent tumor cell killing by T cells. Our findings demonstrate that nonproteolytic ubiquitination of PD-L1 by MIB2 is required for its transportation to the plasma membrane and tumor cell immune evasion. |
doi_str_mv | 10.1172/JCI160456 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_aef3b47bd0214316978bb453b16c1ffd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A737513765</galeid><doaj_id>oai_doaj_org_article_aef3b47bd0214316978bb453b16c1ffd</doaj_id><sourcerecordid>A737513765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c673t-32245c6d22948f4ded5ba5189737bb13f78183966fd0188fb8c4ecd6ce85199f3</originalsourceid><addsrcrecordid>eNqNk1uP1CAUgBujcdfVB_-AaWJi9KFrgXLpi8k63saMWePtlQCFlklbZoFu9N9LZ9dxxsyD4QFy-M4HHCDLHoPyHAAKX35cLAEpK0zuZKcAY1YwiNjdvfFJ9iCEdVmCqsLV_ewEEQpqxOBppj6_KVYgj16MoXdKROvGPLo8djrf9CIMIh_0INO0zvUoZK9DHqfB-dwOwzQHr0XY5nTeTW2Xf1q-hvkk7dVkox23vofZPSP6oB_d9mfZ93dvvy0-FKvL98vFxapQhKJYIAgrrEgDYV0xUzW6wVJgwGqKqJQAGcoAQzUhpikBY0YyVWnVEKUZBnVt0Fm2vPE2Tqz5xttB-F_cCcu3AedbLny0qtdcaINkRWVTQlAhQGrKpKwwkoAoYEyTXK9uXJtJDrpRekwl6g-khzOj7XjrrnnNWNokSoLntwLvriYdIh9sULrvUyXdFDikFCCE4BZ9-g-6dpMfU6lmCiFMaQn_Uq1IB7CjcWldNUv5RaoQBogSnKjiCNXqUadNulEbm8IH_PkRPrVGD1YdTXhxkJCYqH_GVkwh8OXXL__PXv44ZJ_tsZ0WfeyC66f5AYWjUuVdCF6b3aWAks_fge--Q2Kf7N_ijvzz_tFvn58AXA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773357702</pqid></control><display><type>article</type><title>PD-L1 translocation to the plasma membrane enables tumor immune evasion through MIB2 ubiquitination</title><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Yu, Xinfang ; Li, Wei ; Liu, Haidan ; Wang, Xu ; Coarfa, Cristian ; Cheng, Chao ; Yu, Xinlian ; Zeng, Zhaoyang ; Cao, Ya ; Young, Ken H ; Li, Yong</creator><creatorcontrib>Yu, Xinfang ; Li, Wei ; Liu, Haidan ; Wang, Xu ; Coarfa, Cristian ; Cheng, Chao ; Yu, Xinlian ; Zeng, Zhaoyang ; Cao, Ya ; Young, Ken H ; Li, Yong</creatorcontrib><description>Programmed death-ligand 1 (PD-L1), a critical immune checkpoint ligand, is a transmembrane protein synthesized in the endoplasmic reticulum of tumor cells and transported to the plasma membrane to interact with programmed death 1 (PD-1) expressed on T cell surface. This interaction delivers coinhibitory signals to T cells, thereby suppressing their function and allowing evasion of antitumor immunity. Most companion or complementary diagnostic devices for assessing PD-L1 expression levels in tumor cells used in the clinic or in clinical trials require membranous staining. However, the mechanism driving PD-L1 translocation to the plasma membrane after de novo synthesis is poorly understood. Herein, we showed that mind bomb homolog 2 (MIB2) is required for PD-L1 transportation from the trans-Golgi network (TGN) to the plasma membrane of cancer cells. MIB2 deficiency led to fewer PD-L1 proteins on the tumor cell surface and promoted antitumor immunity in mice. Mechanistically, MIB2 catalyzed nonproteolytic K63-linked ubiquitination of PD-L1, facilitating PD-L1 trafficking through Ras-associated binding 8-mediated (RAB8-mediated) exocytosis from the TGN to the plasma membrane, where it bound PD-1 extrinsically to prevent tumor cell killing by T cells. Our findings demonstrate that nonproteolytic ubiquitination of PD-L1 by MIB2 is required for its transportation to the plasma membrane and tumor cell immune evasion.</description><identifier>ISSN: 1558-8238</identifier><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI160456</identifier><identifier>PMID: 36719382</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Animals ; Apoptosis ; B cells ; B7-H1 Antigen ; Biological transport ; Biomedical research ; Cancer ; Cell biology ; Cell Line, Tumor ; Cell Membrane - metabolism ; Cell membranes ; Cell surface ; Cells ; Clinical trials ; Development and progression ; Endoplasmic reticulum ; Exocytosis ; Genetic aspects ; Golgi apparatus ; Health aspects ; Immune checkpoint ; Immune Evasion ; Ligands ; Lymphocytes ; Lymphocytes T ; Membrane proteins ; Metastasis ; Mice ; Oncology ; Oncology, Experimental ; PD-1 protein ; PD-L1 protein ; Physiological aspects ; Plasma ; Programmed Cell Death 1 Receptor - metabolism ; Proteins ; T cells ; Tumor cells ; Tumor Escape ; Tumors ; Ubiquitin ; Ubiquitin-proteasome system ; Ubiquitination</subject><ispartof>The Journal of clinical investigation, 2023-02, Vol.133 (3), p.1-15</ispartof><rights>COPYRIGHT 2023 American Society for Clinical Investigation</rights><rights>Copyright American Society for Clinical Investigation Feb 2023</rights><rights>2023 Yu et al. 2023 Yu et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c673t-32245c6d22948f4ded5ba5189737bb13f78183966fd0188fb8c4ecd6ce85199f3</citedby><cites>FETCH-LOGICAL-c673t-32245c6d22948f4ded5ba5189737bb13f78183966fd0188fb8c4ecd6ce85199f3</cites><orcidid>0000-0002-0648-0565 ; 0000-0002-4183-4939 ; 0000-0002-5002-3417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9888393/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9888393/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36719382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Xinfang</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Liu, Haidan</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Coarfa, Cristian</creatorcontrib><creatorcontrib>Cheng, Chao</creatorcontrib><creatorcontrib>Yu, Xinlian</creatorcontrib><creatorcontrib>Zeng, Zhaoyang</creatorcontrib><creatorcontrib>Cao, Ya</creatorcontrib><creatorcontrib>Young, Ken H</creatorcontrib><creatorcontrib>Li, Yong</creatorcontrib><title>PD-L1 translocation to the plasma membrane enables tumor immune evasion through MIB2 ubiquitination</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>Programmed death-ligand 1 (PD-L1), a critical immune checkpoint ligand, is a transmembrane protein synthesized in the endoplasmic reticulum of tumor cells and transported to the plasma membrane to interact with programmed death 1 (PD-1) expressed on T cell surface. This interaction delivers coinhibitory signals to T cells, thereby suppressing their function and allowing evasion of antitumor immunity. Most companion or complementary diagnostic devices for assessing PD-L1 expression levels in tumor cells used in the clinic or in clinical trials require membranous staining. However, the mechanism driving PD-L1 translocation to the plasma membrane after de novo synthesis is poorly understood. Herein, we showed that mind bomb homolog 2 (MIB2) is required for PD-L1 transportation from the trans-Golgi network (TGN) to the plasma membrane of cancer cells. MIB2 deficiency led to fewer PD-L1 proteins on the tumor cell surface and promoted antitumor immunity in mice. Mechanistically, MIB2 catalyzed nonproteolytic K63-linked ubiquitination of PD-L1, facilitating PD-L1 trafficking through Ras-associated binding 8-mediated (RAB8-mediated) exocytosis from the TGN to the plasma membrane, where it bound PD-1 extrinsically to prevent tumor cell killing by T cells. Our findings demonstrate that nonproteolytic ubiquitination of PD-L1 by MIB2 is required for its transportation to the plasma membrane and tumor cell immune evasion.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>B cells</subject><subject>B7-H1 Antigen</subject><subject>Biological transport</subject><subject>Biomedical research</subject><subject>Cancer</subject><subject>Cell biology</subject><subject>Cell Line, Tumor</subject><subject>Cell Membrane - metabolism</subject><subject>Cell membranes</subject><subject>Cell surface</subject><subject>Cells</subject><subject>Clinical trials</subject><subject>Development and progression</subject><subject>Endoplasmic reticulum</subject><subject>Exocytosis</subject><subject>Genetic aspects</subject><subject>Golgi apparatus</subject><subject>Health aspects</subject><subject>Immune checkpoint</subject><subject>Immune Evasion</subject><subject>Ligands</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Membrane proteins</subject><subject>Metastasis</subject><subject>Mice</subject><subject>Oncology</subject><subject>Oncology, Experimental</subject><subject>PD-1 protein</subject><subject>PD-L1 protein</subject><subject>Physiological aspects</subject><subject>Plasma</subject><subject>Programmed Cell Death 1 Receptor - metabolism</subject><subject>Proteins</subject><subject>T cells</subject><subject>Tumor cells</subject><subject>Tumor Escape</subject><subject>Tumors</subject><subject>Ubiquitin</subject><subject>Ubiquitin-proteasome system</subject><subject>Ubiquitination</subject><issn>1558-8238</issn><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqNk1uP1CAUgBujcdfVB_-AaWJi9KFrgXLpi8k63saMWePtlQCFlklbZoFu9N9LZ9dxxsyD4QFy-M4HHCDLHoPyHAAKX35cLAEpK0zuZKcAY1YwiNjdvfFJ9iCEdVmCqsLV_ewEEQpqxOBppj6_KVYgj16MoXdKROvGPLo8djrf9CIMIh_0INO0zvUoZK9DHqfB-dwOwzQHr0XY5nTeTW2Xf1q-hvkk7dVkox23vofZPSP6oB_d9mfZ93dvvy0-FKvL98vFxapQhKJYIAgrrEgDYV0xUzW6wVJgwGqKqJQAGcoAQzUhpikBY0YyVWnVEKUZBnVt0Fm2vPE2Tqz5xttB-F_cCcu3AedbLny0qtdcaINkRWVTQlAhQGrKpKwwkoAoYEyTXK9uXJtJDrpRekwl6g-khzOj7XjrrnnNWNokSoLntwLvriYdIh9sULrvUyXdFDikFCCE4BZ9-g-6dpMfU6lmCiFMaQn_Uq1IB7CjcWldNUv5RaoQBogSnKjiCNXqUadNulEbm8IH_PkRPrVGD1YdTXhxkJCYqH_GVkwh8OXXL__PXv44ZJ_tsZ0WfeyC66f5AYWjUuVdCF6b3aWAks_fge--Q2Kf7N_ijvzz_tFvn58AXA</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Yu, Xinfang</creator><creator>Li, Wei</creator><creator>Liu, Haidan</creator><creator>Wang, Xu</creator><creator>Coarfa, Cristian</creator><creator>Cheng, Chao</creator><creator>Yu, Xinlian</creator><creator>Zeng, Zhaoyang</creator><creator>Cao, Ya</creator><creator>Young, Ken H</creator><creator>Li, Yong</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0648-0565</orcidid><orcidid>https://orcid.org/0000-0002-4183-4939</orcidid><orcidid>https://orcid.org/0000-0002-5002-3417</orcidid></search><sort><creationdate>20230201</creationdate><title>PD-L1 translocation to the plasma membrane enables tumor immune evasion through MIB2 ubiquitination</title><author>Yu, Xinfang ; Li, Wei ; Liu, Haidan ; Wang, Xu ; Coarfa, Cristian ; Cheng, Chao ; Yu, Xinlian ; Zeng, Zhaoyang ; Cao, Ya ; Young, Ken H ; Li, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c673t-32245c6d22948f4ded5ba5189737bb13f78183966fd0188fb8c4ecd6ce85199f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>B cells</topic><topic>B7-H1 Antigen</topic><topic>Biological transport</topic><topic>Biomedical research</topic><topic>Cancer</topic><topic>Cell biology</topic><topic>Cell Line, Tumor</topic><topic>Cell Membrane - metabolism</topic><topic>Cell membranes</topic><topic>Cell surface</topic><topic>Cells</topic><topic>Clinical trials</topic><topic>Development and progression</topic><topic>Endoplasmic reticulum</topic><topic>Exocytosis</topic><topic>Genetic aspects</topic><topic>Golgi apparatus</topic><topic>Health aspects</topic><topic>Immune checkpoint</topic><topic>Immune Evasion</topic><topic>Ligands</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Membrane proteins</topic><topic>Metastasis</topic><topic>Mice</topic><topic>Oncology</topic><topic>Oncology, Experimental</topic><topic>PD-1 protein</topic><topic>PD-L1 protein</topic><topic>Physiological aspects</topic><topic>Plasma</topic><topic>Programmed Cell Death 1 Receptor - metabolism</topic><topic>Proteins</topic><topic>T cells</topic><topic>Tumor cells</topic><topic>Tumor Escape</topic><topic>Tumors</topic><topic>Ubiquitin</topic><topic>Ubiquitin-proteasome system</topic><topic>Ubiquitination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Xinfang</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Liu, Haidan</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Coarfa, Cristian</creatorcontrib><creatorcontrib>Cheng, Chao</creatorcontrib><creatorcontrib>Yu, Xinlian</creatorcontrib><creatorcontrib>Zeng, Zhaoyang</creatorcontrib><creatorcontrib>Cao, Ya</creatorcontrib><creatorcontrib>Young, Ken H</creatorcontrib><creatorcontrib>Li, Yong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJÂ Directory of Open Access Journals</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Xinfang</au><au>Li, Wei</au><au>Liu, Haidan</au><au>Wang, Xu</au><au>Coarfa, Cristian</au><au>Cheng, Chao</au><au>Yu, Xinlian</au><au>Zeng, Zhaoyang</au><au>Cao, Ya</au><au>Young, Ken H</au><au>Li, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PD-L1 translocation to the plasma membrane enables tumor immune evasion through MIB2 ubiquitination</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>133</volume><issue>3</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1558-8238</issn><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Programmed death-ligand 1 (PD-L1), a critical immune checkpoint ligand, is a transmembrane protein synthesized in the endoplasmic reticulum of tumor cells and transported to the plasma membrane to interact with programmed death 1 (PD-1) expressed on T cell surface. This interaction delivers coinhibitory signals to T cells, thereby suppressing their function and allowing evasion of antitumor immunity. Most companion or complementary diagnostic devices for assessing PD-L1 expression levels in tumor cells used in the clinic or in clinical trials require membranous staining. However, the mechanism driving PD-L1 translocation to the plasma membrane after de novo synthesis is poorly understood. Herein, we showed that mind bomb homolog 2 (MIB2) is required for PD-L1 transportation from the trans-Golgi network (TGN) to the plasma membrane of cancer cells. MIB2 deficiency led to fewer PD-L1 proteins on the tumor cell surface and promoted antitumor immunity in mice. Mechanistically, MIB2 catalyzed nonproteolytic K63-linked ubiquitination of PD-L1, facilitating PD-L1 trafficking through Ras-associated binding 8-mediated (RAB8-mediated) exocytosis from the TGN to the plasma membrane, where it bound PD-1 extrinsically to prevent tumor cell killing by T cells. Our findings demonstrate that nonproteolytic ubiquitination of PD-L1 by MIB2 is required for its transportation to the plasma membrane and tumor cell immune evasion.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>36719382</pmid><doi>10.1172/JCI160456</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0648-0565</orcidid><orcidid>https://orcid.org/0000-0002-4183-4939</orcidid><orcidid>https://orcid.org/0000-0002-5002-3417</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1558-8238 |
ispartof | The Journal of clinical investigation, 2023-02, Vol.133 (3), p.1-15 |
issn | 1558-8238 0021-9738 1558-8238 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_aef3b47bd0214316978bb453b16c1ffd |
source | PubMed Central; EZB Electronic Journals Library |
subjects | Animals Apoptosis B cells B7-H1 Antigen Biological transport Biomedical research Cancer Cell biology Cell Line, Tumor Cell Membrane - metabolism Cell membranes Cell surface Cells Clinical trials Development and progression Endoplasmic reticulum Exocytosis Genetic aspects Golgi apparatus Health aspects Immune checkpoint Immune Evasion Ligands Lymphocytes Lymphocytes T Membrane proteins Metastasis Mice Oncology Oncology, Experimental PD-1 protein PD-L1 protein Physiological aspects Plasma Programmed Cell Death 1 Receptor - metabolism Proteins T cells Tumor cells Tumor Escape Tumors Ubiquitin Ubiquitin-proteasome system Ubiquitination |
title | PD-L1 translocation to the plasma membrane enables tumor immune evasion through MIB2 ubiquitination |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A02%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PD-L1%20translocation%20to%20the%20plasma%20membrane%20enables%20tumor%20immune%20evasion%20through%20MIB2%20ubiquitination&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Yu,%20Xinfang&rft.date=2023-02-01&rft.volume=133&rft.issue=3&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1558-8238&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI160456&rft_dat=%3Cgale_doaj_%3EA737513765%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c673t-32245c6d22948f4ded5ba5189737bb13f78183966fd0188fb8c4ecd6ce85199f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2773357702&rft_id=info:pmid/36719382&rft_galeid=A737513765&rfr_iscdi=true |