Loading…
Coordinated conformational changes in P450 decarboxylases enable hydrocarbons production from renewable feedstocks
Fatty acid peroxygenases have emerged as promising biocatalysts for hydrocarbon biosynthesis due to their ability to perform C-C scission, producing olefins - key building blocks for sustainable materials and fuels. These enzymes operate through non-canonical and complex mechanisms that yield a bifu...
Saved in:
Published in: | Nature communications 2025-01, Vol.16 (1), p.945-13, Article 945 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3374-85bf6c86e879a4b958f5c36816c0d7bb87488ec84412e038a965733b62de56ca3 |
container_end_page | 13 |
container_issue | 1 |
container_start_page | 945 |
container_title | Nature communications |
container_volume | 16 |
creator | Generoso, Wesley Cardoso Alvarenga, Alana Helen Santana Simões, Isabelle Taira Miyamoto, Renan Yuji Melo, Ricardo Rodrigues de Guilherme, Ederson Paulo Xavier Mandelli, Fernanda Santos, Clelton Aparecido Prata, Rafaela Santos, Camila Ramos dos Colombari, Felippe Mariano Morais, Mariana Abrahão Bueno Pimentel Fernandes, Rodrigo Persinoti, Gabriela Felix Murakami, Mario Tyago Zanphorlin, Leticia Maria |
description | Fatty acid peroxygenases have emerged as promising biocatalysts for hydrocarbon biosynthesis due to their ability to perform C-C scission, producing olefins - key building blocks for sustainable materials and fuels. These enzymes operate through non-canonical and complex mechanisms that yield a bifurcated chemoselectivity between hydroxylation and decarboxylation. In this study, we elucidate structural features in P450 decarboxylases that enable the catalysis of unsaturated substrates, expanding the mechanistic pathways for decarboxylation reaction. Combining X-ray crystallography, molecular dynamics simulations, and machine learning, we have identified intricate molecular rearrangements within the active site that enable the Cβ atom of the substrate to approach the heme iron, thereby promoting oleate decarboxylation. Furthermore, we demonstrate that the absence of the aromatic residue in the Phe-His-Arg triad preserves chemoselectivity for alkenes, providing a distinct perspective on the molecular determinants of decarboxylation activity. Ultimately, these findings enable the sustainable production of biohydrocarbons from industrial feedstocks.
This study uncovers a distinct mechanistic pathway for bio-olefin production from industrial feedstocks by fatty acid peroxygenases through unconventional decarboxylation, paving the way for sustainable bio-based hydrocarbon production. |
doi_str_mv | 10.1038/s41467-025-56256-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_af065e4052584a4d96fe1563bdd8e9ab</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_af065e4052584a4d96fe1563bdd8e9ab</doaj_id><sourcerecordid>3158755984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3374-85bf6c86e879a4b958f5c36816c0d7bb87488ec84412e038a965733b62de56ca3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhi0EotXSP8ABReLCJcXfcU4IrYBWqgQHOFv-mOxmSezFTgr77_FuSmk54IutmXceezwvQi8JviSYqbeZEy6bGlNRC0mFrPkTdE4xJzVpKHv64HyGLnLe4bJYSxTnz9EZaxVnnKpzlNYxJt8HM4GvXAxdTKOZ-hjMULmtCRvIVR-qL1zgyoMzycZfh8HkEoZg7ADV9uBTPCVCrvYp-tkd66suxbFKEODnSdYB-DxF9z2_QM86M2S4uNtX6NvHD1_XV_XN50_X6_c3tWOs4bUStpNOSVBNa7htheqEY1IR6bBvrFUNVwpcaYhQKD9iWikaxqykHoR0hq3Q9cL10ez0PvWjSQcdTa9PgZg22qSpdwNo02EpgGNBheKG-1Z2QIRk1nsFrbGF9W5h7Wc7gncQpmSGR9DHmdBv9SbeakIawVUrCuHNHSHFHzPkSY99djAMJkCcs2ZEqEaI42BW6PU_0l2cU5nIoqKyZQ0pKrqoXIo5J-juX0OwPlpELxbRxSL6ZBF9RL962Md9yR9DFAFbBLmkyvTT37v_g_0NMcLIag</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3158269371</pqid></control><display><type>article</type><title>Coordinated conformational changes in P450 decarboxylases enable hydrocarbons production from renewable feedstocks</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>Nature Journals Online</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Generoso, Wesley Cardoso ; Alvarenga, Alana Helen Santana ; Simões, Isabelle Taira ; Miyamoto, Renan Yuji ; Melo, Ricardo Rodrigues de ; Guilherme, Ederson Paulo Xavier ; Mandelli, Fernanda ; Santos, Clelton Aparecido ; Prata, Rafaela ; Santos, Camila Ramos dos ; Colombari, Felippe Mariano ; Morais, Mariana Abrahão Bueno ; Pimentel Fernandes, Rodrigo ; Persinoti, Gabriela Felix ; Murakami, Mario Tyago ; Zanphorlin, Leticia Maria</creator><creatorcontrib>Generoso, Wesley Cardoso ; Alvarenga, Alana Helen Santana ; Simões, Isabelle Taira ; Miyamoto, Renan Yuji ; Melo, Ricardo Rodrigues de ; Guilherme, Ederson Paulo Xavier ; Mandelli, Fernanda ; Santos, Clelton Aparecido ; Prata, Rafaela ; Santos, Camila Ramos dos ; Colombari, Felippe Mariano ; Morais, Mariana Abrahão Bueno ; Pimentel Fernandes, Rodrigo ; Persinoti, Gabriela Felix ; Murakami, Mario Tyago ; Zanphorlin, Leticia Maria</creatorcontrib><description>Fatty acid peroxygenases have emerged as promising biocatalysts for hydrocarbon biosynthesis due to their ability to perform C-C scission, producing olefins - key building blocks for sustainable materials and fuels. These enzymes operate through non-canonical and complex mechanisms that yield a bifurcated chemoselectivity between hydroxylation and decarboxylation. In this study, we elucidate structural features in P450 decarboxylases that enable the catalysis of unsaturated substrates, expanding the mechanistic pathways for decarboxylation reaction. Combining X-ray crystallography, molecular dynamics simulations, and machine learning, we have identified intricate molecular rearrangements within the active site that enable the Cβ atom of the substrate to approach the heme iron, thereby promoting oleate decarboxylation. Furthermore, we demonstrate that the absence of the aromatic residue in the Phe-His-Arg triad preserves chemoselectivity for alkenes, providing a distinct perspective on the molecular determinants of decarboxylation activity. Ultimately, these findings enable the sustainable production of biohydrocarbons from industrial feedstocks.
This study uncovers a distinct mechanistic pathway for bio-olefin production from industrial feedstocks by fatty acid peroxygenases through unconventional decarboxylation, paving the way for sustainable bio-based hydrocarbon production.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-025-56256-4</identifier><identifier>PMID: 39843428</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 631/114/1305 ; 631/1647/2258/1266 ; 631/45/173 ; 631/57/2266 ; 82/80 ; 82/83 ; Alkenes ; Alkenes - chemistry ; Alkenes - metabolism ; Biocatalysis ; Biocatalysts ; Biosynthesis ; Carboxy-Lyases - chemistry ; Carboxy-Lyases - genetics ; Carboxy-Lyases - metabolism ; Catalysis ; Catalytic Domain ; Cleavage ; Crystallography ; Crystallography, X-Ray ; Cytochrome P-450 Enzyme System - chemistry ; Cytochrome P-450 Enzyme System - genetics ; Cytochrome P-450 Enzyme System - metabolism ; Decarboxylation ; Fatty acids ; Humanities and Social Sciences ; Hydrocarbons ; Hydrocarbons - chemistry ; Hydrocarbons - metabolism ; Hydroxylation ; Machine learning ; Molecular dynamics ; Molecular Dynamics Simulation ; multidisciplinary ; Protein Conformation ; Raw materials ; Science ; Science (multidisciplinary) ; Substrate Specificity ; Sustainability ; Sustainable materials ; Sustainable production ; X-ray crystallography</subject><ispartof>Nature communications, 2025-01, Vol.16 (1), p.945-13, Article 945</ispartof><rights>The Author(s) 2025</rights><rights>2025. The Author(s).</rights><rights>Copyright Nature Publishing Group 2025</rights><rights>The Author(s) 2025 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3374-85bf6c86e879a4b958f5c36816c0d7bb87488ec84412e038a965733b62de56ca3</cites><orcidid>0000-0001-7283-5726 ; 0000-0003-0652-4211 ; 0000-0002-5431-1301 ; 0000-0003-1012-1394 ; 0000-0002-6725-8925 ; 0000-0001-7419-9196 ; 0000-0002-5923-1458 ; 0000-0002-0975-7283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3158269371/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3158269371?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39843428$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Generoso, Wesley Cardoso</creatorcontrib><creatorcontrib>Alvarenga, Alana Helen Santana</creatorcontrib><creatorcontrib>Simões, Isabelle Taira</creatorcontrib><creatorcontrib>Miyamoto, Renan Yuji</creatorcontrib><creatorcontrib>Melo, Ricardo Rodrigues de</creatorcontrib><creatorcontrib>Guilherme, Ederson Paulo Xavier</creatorcontrib><creatorcontrib>Mandelli, Fernanda</creatorcontrib><creatorcontrib>Santos, Clelton Aparecido</creatorcontrib><creatorcontrib>Prata, Rafaela</creatorcontrib><creatorcontrib>Santos, Camila Ramos dos</creatorcontrib><creatorcontrib>Colombari, Felippe Mariano</creatorcontrib><creatorcontrib>Morais, Mariana Abrahão Bueno</creatorcontrib><creatorcontrib>Pimentel Fernandes, Rodrigo</creatorcontrib><creatorcontrib>Persinoti, Gabriela Felix</creatorcontrib><creatorcontrib>Murakami, Mario Tyago</creatorcontrib><creatorcontrib>Zanphorlin, Leticia Maria</creatorcontrib><title>Coordinated conformational changes in P450 decarboxylases enable hydrocarbons production from renewable feedstocks</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Fatty acid peroxygenases have emerged as promising biocatalysts for hydrocarbon biosynthesis due to their ability to perform C-C scission, producing olefins - key building blocks for sustainable materials and fuels. These enzymes operate through non-canonical and complex mechanisms that yield a bifurcated chemoselectivity between hydroxylation and decarboxylation. In this study, we elucidate structural features in P450 decarboxylases that enable the catalysis of unsaturated substrates, expanding the mechanistic pathways for decarboxylation reaction. Combining X-ray crystallography, molecular dynamics simulations, and machine learning, we have identified intricate molecular rearrangements within the active site that enable the Cβ atom of the substrate to approach the heme iron, thereby promoting oleate decarboxylation. Furthermore, we demonstrate that the absence of the aromatic residue in the Phe-His-Arg triad preserves chemoselectivity for alkenes, providing a distinct perspective on the molecular determinants of decarboxylation activity. Ultimately, these findings enable the sustainable production of biohydrocarbons from industrial feedstocks.
This study uncovers a distinct mechanistic pathway for bio-olefin production from industrial feedstocks by fatty acid peroxygenases through unconventional decarboxylation, paving the way for sustainable bio-based hydrocarbon production.</description><subject>119/118</subject><subject>631/114/1305</subject><subject>631/1647/2258/1266</subject><subject>631/45/173</subject><subject>631/57/2266</subject><subject>82/80</subject><subject>82/83</subject><subject>Alkenes</subject><subject>Alkenes - chemistry</subject><subject>Alkenes - metabolism</subject><subject>Biocatalysis</subject><subject>Biocatalysts</subject><subject>Biosynthesis</subject><subject>Carboxy-Lyases - chemistry</subject><subject>Carboxy-Lyases - genetics</subject><subject>Carboxy-Lyases - metabolism</subject><subject>Catalysis</subject><subject>Catalytic Domain</subject><subject>Cleavage</subject><subject>Crystallography</subject><subject>Crystallography, X-Ray</subject><subject>Cytochrome P-450 Enzyme System - chemistry</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>Decarboxylation</subject><subject>Fatty acids</subject><subject>Humanities and Social Sciences</subject><subject>Hydrocarbons</subject><subject>Hydrocarbons - chemistry</subject><subject>Hydrocarbons - metabolism</subject><subject>Hydroxylation</subject><subject>Machine learning</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>multidisciplinary</subject><subject>Protein Conformation</subject><subject>Raw materials</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Substrate Specificity</subject><subject>Sustainability</subject><subject>Sustainable materials</subject><subject>Sustainable production</subject><subject>X-ray crystallography</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhi0EotXSP8ABReLCJcXfcU4IrYBWqgQHOFv-mOxmSezFTgr77_FuSmk54IutmXceezwvQi8JviSYqbeZEy6bGlNRC0mFrPkTdE4xJzVpKHv64HyGLnLe4bJYSxTnz9EZaxVnnKpzlNYxJt8HM4GvXAxdTKOZ-hjMULmtCRvIVR-qL1zgyoMzycZfh8HkEoZg7ADV9uBTPCVCrvYp-tkd66suxbFKEODnSdYB-DxF9z2_QM86M2S4uNtX6NvHD1_XV_XN50_X6_c3tWOs4bUStpNOSVBNa7htheqEY1IR6bBvrFUNVwpcaYhQKD9iWikaxqykHoR0hq3Q9cL10ez0PvWjSQcdTa9PgZg22qSpdwNo02EpgGNBheKG-1Z2QIRk1nsFrbGF9W5h7Wc7gncQpmSGR9DHmdBv9SbeakIawVUrCuHNHSHFHzPkSY99djAMJkCcs2ZEqEaI42BW6PU_0l2cU5nIoqKyZQ0pKrqoXIo5J-juX0OwPlpELxbRxSL6ZBF9RL962Md9yR9DFAFbBLmkyvTT37v_g_0NMcLIag</recordid><startdate>20250122</startdate><enddate>20250122</enddate><creator>Generoso, Wesley Cardoso</creator><creator>Alvarenga, Alana Helen Santana</creator><creator>Simões, Isabelle Taira</creator><creator>Miyamoto, Renan Yuji</creator><creator>Melo, Ricardo Rodrigues de</creator><creator>Guilherme, Ederson Paulo Xavier</creator><creator>Mandelli, Fernanda</creator><creator>Santos, Clelton Aparecido</creator><creator>Prata, Rafaela</creator><creator>Santos, Camila Ramos dos</creator><creator>Colombari, Felippe Mariano</creator><creator>Morais, Mariana Abrahão Bueno</creator><creator>Pimentel Fernandes, Rodrigo</creator><creator>Persinoti, Gabriela Felix</creator><creator>Murakami, Mario Tyago</creator><creator>Zanphorlin, Leticia Maria</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7283-5726</orcidid><orcidid>https://orcid.org/0000-0003-0652-4211</orcidid><orcidid>https://orcid.org/0000-0002-5431-1301</orcidid><orcidid>https://orcid.org/0000-0003-1012-1394</orcidid><orcidid>https://orcid.org/0000-0002-6725-8925</orcidid><orcidid>https://orcid.org/0000-0001-7419-9196</orcidid><orcidid>https://orcid.org/0000-0002-5923-1458</orcidid><orcidid>https://orcid.org/0000-0002-0975-7283</orcidid></search><sort><creationdate>20250122</creationdate><title>Coordinated conformational changes in P450 decarboxylases enable hydrocarbons production from renewable feedstocks</title><author>Generoso, Wesley Cardoso ; Alvarenga, Alana Helen Santana ; Simões, Isabelle Taira ; Miyamoto, Renan Yuji ; Melo, Ricardo Rodrigues de ; Guilherme, Ederson Paulo Xavier ; Mandelli, Fernanda ; Santos, Clelton Aparecido ; Prata, Rafaela ; Santos, Camila Ramos dos ; Colombari, Felippe Mariano ; Morais, Mariana Abrahão Bueno ; Pimentel Fernandes, Rodrigo ; Persinoti, Gabriela Felix ; Murakami, Mario Tyago ; Zanphorlin, Leticia Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3374-85bf6c86e879a4b958f5c36816c0d7bb87488ec84412e038a965733b62de56ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>119/118</topic><topic>631/114/1305</topic><topic>631/1647/2258/1266</topic><topic>631/45/173</topic><topic>631/57/2266</topic><topic>82/80</topic><topic>82/83</topic><topic>Alkenes</topic><topic>Alkenes - chemistry</topic><topic>Alkenes - metabolism</topic><topic>Biocatalysis</topic><topic>Biocatalysts</topic><topic>Biosynthesis</topic><topic>Carboxy-Lyases - chemistry</topic><topic>Carboxy-Lyases - genetics</topic><topic>Carboxy-Lyases - metabolism</topic><topic>Catalysis</topic><topic>Catalytic Domain</topic><topic>Cleavage</topic><topic>Crystallography</topic><topic>Crystallography, X-Ray</topic><topic>Cytochrome P-450 Enzyme System - chemistry</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>Decarboxylation</topic><topic>Fatty acids</topic><topic>Humanities and Social Sciences</topic><topic>Hydrocarbons</topic><topic>Hydrocarbons - chemistry</topic><topic>Hydrocarbons - metabolism</topic><topic>Hydroxylation</topic><topic>Machine learning</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>multidisciplinary</topic><topic>Protein Conformation</topic><topic>Raw materials</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Substrate Specificity</topic><topic>Sustainability</topic><topic>Sustainable materials</topic><topic>Sustainable production</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Generoso, Wesley Cardoso</creatorcontrib><creatorcontrib>Alvarenga, Alana Helen Santana</creatorcontrib><creatorcontrib>Simões, Isabelle Taira</creatorcontrib><creatorcontrib>Miyamoto, Renan Yuji</creatorcontrib><creatorcontrib>Melo, Ricardo Rodrigues de</creatorcontrib><creatorcontrib>Guilherme, Ederson Paulo Xavier</creatorcontrib><creatorcontrib>Mandelli, Fernanda</creatorcontrib><creatorcontrib>Santos, Clelton Aparecido</creatorcontrib><creatorcontrib>Prata, Rafaela</creatorcontrib><creatorcontrib>Santos, Camila Ramos dos</creatorcontrib><creatorcontrib>Colombari, Felippe Mariano</creatorcontrib><creatorcontrib>Morais, Mariana Abrahão Bueno</creatorcontrib><creatorcontrib>Pimentel Fernandes, Rodrigo</creatorcontrib><creatorcontrib>Persinoti, Gabriela Felix</creatorcontrib><creatorcontrib>Murakami, Mario Tyago</creatorcontrib><creatorcontrib>Zanphorlin, Leticia Maria</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Generoso, Wesley Cardoso</au><au>Alvarenga, Alana Helen Santana</au><au>Simões, Isabelle Taira</au><au>Miyamoto, Renan Yuji</au><au>Melo, Ricardo Rodrigues de</au><au>Guilherme, Ederson Paulo Xavier</au><au>Mandelli, Fernanda</au><au>Santos, Clelton Aparecido</au><au>Prata, Rafaela</au><au>Santos, Camila Ramos dos</au><au>Colombari, Felippe Mariano</au><au>Morais, Mariana Abrahão Bueno</au><au>Pimentel Fernandes, Rodrigo</au><au>Persinoti, Gabriela Felix</au><au>Murakami, Mario Tyago</au><au>Zanphorlin, Leticia Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coordinated conformational changes in P450 decarboxylases enable hydrocarbons production from renewable feedstocks</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2025-01-22</date><risdate>2025</risdate><volume>16</volume><issue>1</issue><spage>945</spage><epage>13</epage><pages>945-13</pages><artnum>945</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Fatty acid peroxygenases have emerged as promising biocatalysts for hydrocarbon biosynthesis due to their ability to perform C-C scission, producing olefins - key building blocks for sustainable materials and fuels. These enzymes operate through non-canonical and complex mechanisms that yield a bifurcated chemoselectivity between hydroxylation and decarboxylation. In this study, we elucidate structural features in P450 decarboxylases that enable the catalysis of unsaturated substrates, expanding the mechanistic pathways for decarboxylation reaction. Combining X-ray crystallography, molecular dynamics simulations, and machine learning, we have identified intricate molecular rearrangements within the active site that enable the Cβ atom of the substrate to approach the heme iron, thereby promoting oleate decarboxylation. Furthermore, we demonstrate that the absence of the aromatic residue in the Phe-His-Arg triad preserves chemoselectivity for alkenes, providing a distinct perspective on the molecular determinants of decarboxylation activity. Ultimately, these findings enable the sustainable production of biohydrocarbons from industrial feedstocks.
This study uncovers a distinct mechanistic pathway for bio-olefin production from industrial feedstocks by fatty acid peroxygenases through unconventional decarboxylation, paving the way for sustainable bio-based hydrocarbon production.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39843428</pmid><doi>10.1038/s41467-025-56256-4</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7283-5726</orcidid><orcidid>https://orcid.org/0000-0003-0652-4211</orcidid><orcidid>https://orcid.org/0000-0002-5431-1301</orcidid><orcidid>https://orcid.org/0000-0003-1012-1394</orcidid><orcidid>https://orcid.org/0000-0002-6725-8925</orcidid><orcidid>https://orcid.org/0000-0001-7419-9196</orcidid><orcidid>https://orcid.org/0000-0002-5923-1458</orcidid><orcidid>https://orcid.org/0000-0002-0975-7283</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2025-01, Vol.16 (1), p.945-13, Article 945 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_af065e4052584a4d96fe1563bdd8e9ab |
source | PubMed (Medline); Publicly Available Content Database; Nature Journals Online; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 119/118 631/114/1305 631/1647/2258/1266 631/45/173 631/57/2266 82/80 82/83 Alkenes Alkenes - chemistry Alkenes - metabolism Biocatalysis Biocatalysts Biosynthesis Carboxy-Lyases - chemistry Carboxy-Lyases - genetics Carboxy-Lyases - metabolism Catalysis Catalytic Domain Cleavage Crystallography Crystallography, X-Ray Cytochrome P-450 Enzyme System - chemistry Cytochrome P-450 Enzyme System - genetics Cytochrome P-450 Enzyme System - metabolism Decarboxylation Fatty acids Humanities and Social Sciences Hydrocarbons Hydrocarbons - chemistry Hydrocarbons - metabolism Hydroxylation Machine learning Molecular dynamics Molecular Dynamics Simulation multidisciplinary Protein Conformation Raw materials Science Science (multidisciplinary) Substrate Specificity Sustainability Sustainable materials Sustainable production X-ray crystallography |
title | Coordinated conformational changes in P450 decarboxylases enable hydrocarbons production from renewable feedstocks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A52%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coordinated%20conformational%20changes%20in%20P450%20decarboxylases%20enable%20hydrocarbons%20production%20from%20renewable%20feedstocks&rft.jtitle=Nature%20communications&rft.au=Generoso,%20Wesley%20Cardoso&rft.date=2025-01-22&rft.volume=16&rft.issue=1&rft.spage=945&rft.epage=13&rft.pages=945-13&rft.artnum=945&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-025-56256-4&rft_dat=%3Cproquest_doaj_%3E3158755984%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3374-85bf6c86e879a4b958f5c36816c0d7bb87488ec84412e038a965733b62de56ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3158269371&rft_id=info:pmid/39843428&rfr_iscdi=true |