Loading…
Normalized Method for Land Surface Temperature Monitoring on Coastal Reclaimed Areas
The temporal analysis of land surface temperature (LST) has generally been studied using data from the same season, as temperature varies greatly over time. However, the cloud cover in thermal remotely sensed images and the coarse resolution of passive sensor system significantly limits data availab...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2019-11, Vol.19 (22), p.4836 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The temporal analysis of land surface temperature (LST) has generally been studied using data from the same season, as temperature varies greatly over time. However, the cloud cover in thermal remotely sensed images and the coarse resolution of passive sensor system significantly limits data availability of same season for comparative temporal analysis in many parts of the world. To address this problem, we propose a new method for temporal monitoring of surface temperature based on LST normalization (LSTn); deploying the average open water temperature to normalize LST when monitoring temporal change in the surface temperature of newly coastal reclaimed areas. This method was applied in the Lingding Bay area, Guangdong Province, Southern China. Original LST and LSTn values were calculated for years 1987, 1997, 2007, and 2017. In contrast to the original LST, results show that LSTn can reduce seasonal variability when monitoring temporal change in surface temperatures. Additionally, LSTn revealed pronounced differences between the temperature of impervious surfaces and other land cover types. This method offers more robust detection of surface urban heat islands than original LST in newly developed coastal areas. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s19224836 |