Loading…
The mechanism of PFK-1 in the occurrence and development of bladder cancer by regulating ZEB1 lactylation
Bladder cancer (BC) is one of the most common malignancies of the genitourinary system. Phosphofructokinase 1 (PFK-1) is one of member of PFK, which plays an important role in reprogramming cancer metabolism, such as lactylation modification. Zinc finger E-box-binding homeobox 1 (ZEB1) has been demo...
Saved in:
Published in: | BMC urology 2024-03, Vol.24 (1), p.59-59, Article 59 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bladder cancer (BC) is one of the most common malignancies of the genitourinary system. Phosphofructokinase 1 (PFK-1) is one of member of PFK, which plays an important role in reprogramming cancer metabolism, such as lactylation modification. Zinc finger E-box-binding homeobox 1 (ZEB1) has been demonstrated to be a oncogene in many cancers. Therefore, this study was performed to explore the effects of PFK-1 on the lactylation of ZEB1 in BC development.
Cell viability was measured using the CCK-8 kit. The glucose assay kit and lactate assay kit were used to detect glucose utilization and lactate production. The DNA was purified and quantified by qRT-PCR.
In the present study, we found that ZEB1 expression levels were significantly elevated in bladder cancer cells. Impaired PFK-1 expression inhibits proliferation, migration, and invasion of BC cells and suppresses tumour growth in vivo. We subsequently found that knockdown of PFK-1 decreases glycolysis, including reduced glucose consumption, lactate production and total extracellular acidification rate (ECAR). Mechanistically, PFK-1 inhibits histone lactylation of bladder cancer cells, and thus inhibits the transcription activity of ZEB1.
Our results suggest that PFK-1 can inhibit the malignant phenotype of bladder cancer cells by mediating the lactylation of ZEB1. These findings suggested PFK-1 to be a new potential target for bladder cancer therapy. |
---|---|
ISSN: | 1471-2490 1471-2490 |
DOI: | 10.1186/s12894-024-01444-5 |