Loading…

3D geological implicit modeling method of regular voxel splitting based on layered interpolation data

In view of the problems in traditional geological modeling methods, such as the insufficient utilization of geological survey data, the inaccurate expression of a stratigraphic model, and the large amount of model data, a 3D geological model cannot be smoothly loaded and rendered on the web end. In...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2022-08, Vol.12 (1), p.13840-13840, Article 13840
Main Authors: Li, Jian, Liu, Peirong, Wang, Xinyu, Cui, Hao, Ma, Yurong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In view of the problems in traditional geological modeling methods, such as the insufficient utilization of geological survey data, the inaccurate expression of a stratigraphic model, and the large amount of model data, a 3D geological model cannot be smoothly loaded and rendered on the web end. In this paper, a 3D geological implicit modeling method of regular voxel splitting based on hierarchical interpolation data is proposed. This method first uses the boreholes and geological section data from a geological survey for data conversion and fusion, compares the applicability of different interpolation algorithms through cross-validation research, and uses the best fitting algorithm to interpolate and encrypt discrete points in the formation. Then, it constructs the regular voxels, designs five different regular voxel split types, and divides the voxels. In addition, the data structure design of the voxel split model is implemented, and the irregular voxel metadata structure is analyzed and displayed through Three.js. Using this method, based on the survey data of an area in Zhengzhou, the global workflow from data processing to model construction and visualization is demonstrated. The experimental results show that the model can integrate multisource hierarchical interpolation data; express different stratum structures accurately and smoothly, and can realize the rendering, spatial query and analysis of the internal information of a geological body in a browser.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-17231-x