Loading…

Study of the Radar Cross-Section of Turbofan Engine with Biaxial Multirotor Based on Dynamic Scattering Method

With the continuous advancement of rotor dynamic electromagnetic scattering research, the radar cross-section (RCS) of turbofan engines has attracted more and more attention. In order to solve the electromagnetic scattering characteristics of a biaxial multirotor turbofan engine, a dynamic scatterin...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2020-11, Vol.13 (21), p.5802
Main Authors: Zhou, Zeyang, Huang, Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the continuous advancement of rotor dynamic electromagnetic scattering research, the radar cross-section (RCS) of turbofan engines has attracted more and more attention. In order to solve the electromagnetic scattering characteristics of a biaxial multirotor turbofan engine, a dynamic scattering method (DSM) based on dynamic simulation and grid transformation is presented, where the static RCS of the engine and its components is calculated by physical optics and physical theory of diffraction. The results show that the electromagnetic scattering of the engine is periodic when the engine is working stably, while the rotors such as fans and turbines are the main factors affecting the dynamic electromagnetic scattering and the ducts greatly increase the overall RCS level of the engine. The proposed DSM is effective and efficient for studying the dynamic electromagnetic scattering characteristic of the turbofan engine.
ISSN:1996-1073
1996-1073
DOI:10.3390/en13215802