Loading…

A PCA-Based Active Appearance Model for Characterising Modes of Spatiotemporal Variation in Dynamic Facial Behaviours

Faces carry key personal information about individuals, including cues to their identity, social traits, and emotional state. Much research to date has employed static images of faces taken under tightly controlled conditions yet faces in the real world are dynamic and experienced under ambient cond...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in psychology 2022-05, Vol.13, p.880548-880548
Main Authors: Watson, David M., Johnston, Alan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2398-b2511e8ceaa8d9ec7b0569572b2519a4348dbf8bb5caadef6843cc187ac578253
container_end_page 880548
container_issue
container_start_page 880548
container_title Frontiers in psychology
container_volume 13
creator Watson, David M.
Johnston, Alan
description Faces carry key personal information about individuals, including cues to their identity, social traits, and emotional state. Much research to date has employed static images of faces taken under tightly controlled conditions yet faces in the real world are dynamic and experienced under ambient conditions. A common approach to studying key dimensions of facial variation is the use of facial caricatures. However, such techniques have again typically relied on static images, and the few examples of dynamic caricatures have relied on animating graphical head models. Here, we present a principal component analysis (PCA)-based active appearance model for capturing patterns of spatiotemporal variation in videos of natural dynamic facial behaviours. We demonstrate how this technique can be applied to generate dynamic anti-caricatures of biological motion patterns in facial behaviours. This technique could be extended to caricaturing other facial dimensions, or to more general analyses of spatiotemporal variations in dynamic faces.
doi_str_mv 10.3389/fpsyg.2022.880548
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_af3d8f28a7da494dbd375f5e7e64e7c7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_af3d8f28a7da494dbd375f5e7e64e7c7</doaj_id><sourcerecordid>2678745260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2398-b2511e8ceaa8d9ec7b0569572b2519a4348dbf8bb5caadef6843cc187ac578253</originalsourceid><addsrcrecordid>eNpVkc1u3CAUha2qVROleYDuWHYzU8Bg8KaSM22aSKlaqT9bdA2XGSLbuGCPNG9fz0wUNWxA5xx9V5dTFO8ZXZelrj_6MR-2a045X2tNpdCviktWVWLFqNKv_3tfFNc5P9LlCMop5W-Li1IqVkvKLou5IT82zeoGMjrS2CnskTTjiJBgsEi-RYcd8TGRzW6R7IQp5DBsT0Ym0ZOfI0whTtiPMUFH_kAKR2EgYSCfDwP0wZJbsGHxbnAH-xDnlN8Vbzx0Ga-f7qvi9-2XX5u71cP3r_eb5mFleVnrVcslY6gtAmhXo1UtlVUtFT8aNYhSaNd63bbSAjj0lRaltUwrsFJpLsur4v7MdREezZhCD-lgIgRzEmLaGkhTsB0a8KXTnmtQDkQtXOtKJb1EhZVAZdXC-nRmjXPbo7M4TMvCL6AvnSHszDbuTc2pWD58AXx4AqT4d8Y8mT5ki10HA8Y5G14prYTkFV2i7By1Keac0D-PYdQc2zen9s2xfXNuv_wHYmakTA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2678745260</pqid></control><display><type>article</type><title>A PCA-Based Active Appearance Model for Characterising Modes of Spatiotemporal Variation in Dynamic Facial Behaviours</title><source>PubMed Central</source><creator>Watson, David M. ; Johnston, Alan</creator><creatorcontrib>Watson, David M. ; Johnston, Alan</creatorcontrib><description>Faces carry key personal information about individuals, including cues to their identity, social traits, and emotional state. Much research to date has employed static images of faces taken under tightly controlled conditions yet faces in the real world are dynamic and experienced under ambient conditions. A common approach to studying key dimensions of facial variation is the use of facial caricatures. However, such techniques have again typically relied on static images, and the few examples of dynamic caricatures have relied on animating graphical head models. Here, we present a principal component analysis (PCA)-based active appearance model for capturing patterns of spatiotemporal variation in videos of natural dynamic facial behaviours. We demonstrate how this technique can be applied to generate dynamic anti-caricatures of biological motion patterns in facial behaviours. This technique could be extended to caricaturing other facial dimensions, or to more general analyses of spatiotemporal variations in dynamic faces.</description><identifier>ISSN: 1664-1078</identifier><identifier>EISSN: 1664-1078</identifier><identifier>DOI: 10.3389/fpsyg.2022.880548</identifier><identifier>PMID: 35719501</identifier><language>eng</language><publisher>Frontiers Media S.A</publisher><subject>ambient faces ; computational neuroscience ; dynamic faces ; face perception ; facial caricaturing ; Psychology</subject><ispartof>Frontiers in psychology, 2022-05, Vol.13, p.880548-880548</ispartof><rights>Copyright © 2022 Watson and Johnston. 2022 Watson and Johnston</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2398-b2511e8ceaa8d9ec7b0569572b2519a4348dbf8bb5caadef6843cc187ac578253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9204357/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9204357/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Watson, David M.</creatorcontrib><creatorcontrib>Johnston, Alan</creatorcontrib><title>A PCA-Based Active Appearance Model for Characterising Modes of Spatiotemporal Variation in Dynamic Facial Behaviours</title><title>Frontiers in psychology</title><description>Faces carry key personal information about individuals, including cues to their identity, social traits, and emotional state. Much research to date has employed static images of faces taken under tightly controlled conditions yet faces in the real world are dynamic and experienced under ambient conditions. A common approach to studying key dimensions of facial variation is the use of facial caricatures. However, such techniques have again typically relied on static images, and the few examples of dynamic caricatures have relied on animating graphical head models. Here, we present a principal component analysis (PCA)-based active appearance model for capturing patterns of spatiotemporal variation in videos of natural dynamic facial behaviours. We demonstrate how this technique can be applied to generate dynamic anti-caricatures of biological motion patterns in facial behaviours. This technique could be extended to caricaturing other facial dimensions, or to more general analyses of spatiotemporal variations in dynamic faces.</description><subject>ambient faces</subject><subject>computational neuroscience</subject><subject>dynamic faces</subject><subject>face perception</subject><subject>facial caricaturing</subject><subject>Psychology</subject><issn>1664-1078</issn><issn>1664-1078</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkc1u3CAUha2qVROleYDuWHYzU8Bg8KaSM22aSKlaqT9bdA2XGSLbuGCPNG9fz0wUNWxA5xx9V5dTFO8ZXZelrj_6MR-2a045X2tNpdCviktWVWLFqNKv_3tfFNc5P9LlCMop5W-Li1IqVkvKLou5IT82zeoGMjrS2CnskTTjiJBgsEi-RYcd8TGRzW6R7IQp5DBsT0Ym0ZOfI0whTtiPMUFH_kAKR2EgYSCfDwP0wZJbsGHxbnAH-xDnlN8Vbzx0Ga-f7qvi9-2XX5u71cP3r_eb5mFleVnrVcslY6gtAmhXo1UtlVUtFT8aNYhSaNd63bbSAjj0lRaltUwrsFJpLsur4v7MdREezZhCD-lgIgRzEmLaGkhTsB0a8KXTnmtQDkQtXOtKJb1EhZVAZdXC-nRmjXPbo7M4TMvCL6AvnSHszDbuTc2pWD58AXx4AqT4d8Y8mT5ki10HA8Y5G14prYTkFV2i7By1Keac0D-PYdQc2zen9s2xfXNuv_wHYmakTA</recordid><startdate>20220526</startdate><enddate>20220526</enddate><creator>Watson, David M.</creator><creator>Johnston, Alan</creator><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220526</creationdate><title>A PCA-Based Active Appearance Model for Characterising Modes of Spatiotemporal Variation in Dynamic Facial Behaviours</title><author>Watson, David M. ; Johnston, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2398-b2511e8ceaa8d9ec7b0569572b2519a4348dbf8bb5caadef6843cc187ac578253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>ambient faces</topic><topic>computational neuroscience</topic><topic>dynamic faces</topic><topic>face perception</topic><topic>facial caricaturing</topic><topic>Psychology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watson, David M.</creatorcontrib><creatorcontrib>Johnston, Alan</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in psychology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watson, David M.</au><au>Johnston, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A PCA-Based Active Appearance Model for Characterising Modes of Spatiotemporal Variation in Dynamic Facial Behaviours</atitle><jtitle>Frontiers in psychology</jtitle><date>2022-05-26</date><risdate>2022</risdate><volume>13</volume><spage>880548</spage><epage>880548</epage><pages>880548-880548</pages><issn>1664-1078</issn><eissn>1664-1078</eissn><abstract>Faces carry key personal information about individuals, including cues to their identity, social traits, and emotional state. Much research to date has employed static images of faces taken under tightly controlled conditions yet faces in the real world are dynamic and experienced under ambient conditions. A common approach to studying key dimensions of facial variation is the use of facial caricatures. However, such techniques have again typically relied on static images, and the few examples of dynamic caricatures have relied on animating graphical head models. Here, we present a principal component analysis (PCA)-based active appearance model for capturing patterns of spatiotemporal variation in videos of natural dynamic facial behaviours. We demonstrate how this technique can be applied to generate dynamic anti-caricatures of biological motion patterns in facial behaviours. This technique could be extended to caricaturing other facial dimensions, or to more general analyses of spatiotemporal variations in dynamic faces.</abstract><pub>Frontiers Media S.A</pub><pmid>35719501</pmid><doi>10.3389/fpsyg.2022.880548</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1664-1078
ispartof Frontiers in psychology, 2022-05, Vol.13, p.880548-880548
issn 1664-1078
1664-1078
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_af3d8f28a7da494dbd375f5e7e64e7c7
source PubMed Central
subjects ambient faces
computational neuroscience
dynamic faces
face perception
facial caricaturing
Psychology
title A PCA-Based Active Appearance Model for Characterising Modes of Spatiotemporal Variation in Dynamic Facial Behaviours
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A07%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20PCA-Based%20Active%20Appearance%20Model%20for%20Characterising%20Modes%20of%20Spatiotemporal%20Variation%20in%20Dynamic%20Facial%20Behaviours&rft.jtitle=Frontiers%20in%20psychology&rft.au=Watson,%20David%20M.&rft.date=2022-05-26&rft.volume=13&rft.spage=880548&rft.epage=880548&rft.pages=880548-880548&rft.issn=1664-1078&rft.eissn=1664-1078&rft_id=info:doi/10.3389/fpsyg.2022.880548&rft_dat=%3Cproquest_doaj_%3E2678745260%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2398-b2511e8ceaa8d9ec7b0569572b2519a4348dbf8bb5caadef6843cc187ac578253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2678745260&rft_id=info:pmid/35719501&rfr_iscdi=true