Loading…
A PCA-Based Active Appearance Model for Characterising Modes of Spatiotemporal Variation in Dynamic Facial Behaviours
Faces carry key personal information about individuals, including cues to their identity, social traits, and emotional state. Much research to date has employed static images of faces taken under tightly controlled conditions yet faces in the real world are dynamic and experienced under ambient cond...
Saved in:
Published in: | Frontiers in psychology 2022-05, Vol.13, p.880548-880548 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2398-b2511e8ceaa8d9ec7b0569572b2519a4348dbf8bb5caadef6843cc187ac578253 |
container_end_page | 880548 |
container_issue | |
container_start_page | 880548 |
container_title | Frontiers in psychology |
container_volume | 13 |
creator | Watson, David M. Johnston, Alan |
description | Faces carry key personal information about individuals, including cues to their identity, social traits, and emotional state. Much research to date has employed static images of faces taken under tightly controlled conditions yet faces in the real world are dynamic and experienced under ambient conditions. A common approach to studying key dimensions of facial variation is the use of facial caricatures. However, such techniques have again typically relied on static images, and the few examples of dynamic caricatures have relied on animating graphical head models. Here, we present a principal component analysis (PCA)-based active appearance model for capturing patterns of spatiotemporal variation in videos of natural dynamic facial behaviours. We demonstrate how this technique can be applied to generate dynamic anti-caricatures of biological motion patterns in facial behaviours. This technique could be extended to caricaturing other facial dimensions, or to more general analyses of spatiotemporal variations in dynamic faces. |
doi_str_mv | 10.3389/fpsyg.2022.880548 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_af3d8f28a7da494dbd375f5e7e64e7c7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_af3d8f28a7da494dbd375f5e7e64e7c7</doaj_id><sourcerecordid>2678745260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2398-b2511e8ceaa8d9ec7b0569572b2519a4348dbf8bb5caadef6843cc187ac578253</originalsourceid><addsrcrecordid>eNpVkc1u3CAUha2qVROleYDuWHYzU8Bg8KaSM22aSKlaqT9bdA2XGSLbuGCPNG9fz0wUNWxA5xx9V5dTFO8ZXZelrj_6MR-2a045X2tNpdCviktWVWLFqNKv_3tfFNc5P9LlCMop5W-Li1IqVkvKLou5IT82zeoGMjrS2CnskTTjiJBgsEi-RYcd8TGRzW6R7IQp5DBsT0Ym0ZOfI0whTtiPMUFH_kAKR2EgYSCfDwP0wZJbsGHxbnAH-xDnlN8Vbzx0Ga-f7qvi9-2XX5u71cP3r_eb5mFleVnrVcslY6gtAmhXo1UtlVUtFT8aNYhSaNd63bbSAjj0lRaltUwrsFJpLsur4v7MdREezZhCD-lgIgRzEmLaGkhTsB0a8KXTnmtQDkQtXOtKJb1EhZVAZdXC-nRmjXPbo7M4TMvCL6AvnSHszDbuTc2pWD58AXx4AqT4d8Y8mT5ki10HA8Y5G14prYTkFV2i7By1Keac0D-PYdQc2zen9s2xfXNuv_wHYmakTA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2678745260</pqid></control><display><type>article</type><title>A PCA-Based Active Appearance Model for Characterising Modes of Spatiotemporal Variation in Dynamic Facial Behaviours</title><source>PubMed Central</source><creator>Watson, David M. ; Johnston, Alan</creator><creatorcontrib>Watson, David M. ; Johnston, Alan</creatorcontrib><description>Faces carry key personal information about individuals, including cues to their identity, social traits, and emotional state. Much research to date has employed static images of faces taken under tightly controlled conditions yet faces in the real world are dynamic and experienced under ambient conditions. A common approach to studying key dimensions of facial variation is the use of facial caricatures. However, such techniques have again typically relied on static images, and the few examples of dynamic caricatures have relied on animating graphical head models. Here, we present a principal component analysis (PCA)-based active appearance model for capturing patterns of spatiotemporal variation in videos of natural dynamic facial behaviours. We demonstrate how this technique can be applied to generate dynamic anti-caricatures of biological motion patterns in facial behaviours. This technique could be extended to caricaturing other facial dimensions, or to more general analyses of spatiotemporal variations in dynamic faces.</description><identifier>ISSN: 1664-1078</identifier><identifier>EISSN: 1664-1078</identifier><identifier>DOI: 10.3389/fpsyg.2022.880548</identifier><identifier>PMID: 35719501</identifier><language>eng</language><publisher>Frontiers Media S.A</publisher><subject>ambient faces ; computational neuroscience ; dynamic faces ; face perception ; facial caricaturing ; Psychology</subject><ispartof>Frontiers in psychology, 2022-05, Vol.13, p.880548-880548</ispartof><rights>Copyright © 2022 Watson and Johnston. 2022 Watson and Johnston</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2398-b2511e8ceaa8d9ec7b0569572b2519a4348dbf8bb5caadef6843cc187ac578253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9204357/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9204357/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Watson, David M.</creatorcontrib><creatorcontrib>Johnston, Alan</creatorcontrib><title>A PCA-Based Active Appearance Model for Characterising Modes of Spatiotemporal Variation in Dynamic Facial Behaviours</title><title>Frontiers in psychology</title><description>Faces carry key personal information about individuals, including cues to their identity, social traits, and emotional state. Much research to date has employed static images of faces taken under tightly controlled conditions yet faces in the real world are dynamic and experienced under ambient conditions. A common approach to studying key dimensions of facial variation is the use of facial caricatures. However, such techniques have again typically relied on static images, and the few examples of dynamic caricatures have relied on animating graphical head models. Here, we present a principal component analysis (PCA)-based active appearance model for capturing patterns of spatiotemporal variation in videos of natural dynamic facial behaviours. We demonstrate how this technique can be applied to generate dynamic anti-caricatures of biological motion patterns in facial behaviours. This technique could be extended to caricaturing other facial dimensions, or to more general analyses of spatiotemporal variations in dynamic faces.</description><subject>ambient faces</subject><subject>computational neuroscience</subject><subject>dynamic faces</subject><subject>face perception</subject><subject>facial caricaturing</subject><subject>Psychology</subject><issn>1664-1078</issn><issn>1664-1078</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkc1u3CAUha2qVROleYDuWHYzU8Bg8KaSM22aSKlaqT9bdA2XGSLbuGCPNG9fz0wUNWxA5xx9V5dTFO8ZXZelrj_6MR-2a045X2tNpdCviktWVWLFqNKv_3tfFNc5P9LlCMop5W-Li1IqVkvKLou5IT82zeoGMjrS2CnskTTjiJBgsEi-RYcd8TGRzW6R7IQp5DBsT0Ym0ZOfI0whTtiPMUFH_kAKR2EgYSCfDwP0wZJbsGHxbnAH-xDnlN8Vbzx0Ga-f7qvi9-2XX5u71cP3r_eb5mFleVnrVcslY6gtAmhXo1UtlVUtFT8aNYhSaNd63bbSAjj0lRaltUwrsFJpLsur4v7MdREezZhCD-lgIgRzEmLaGkhTsB0a8KXTnmtQDkQtXOtKJb1EhZVAZdXC-nRmjXPbo7M4TMvCL6AvnSHszDbuTc2pWD58AXx4AqT4d8Y8mT5ki10HA8Y5G14prYTkFV2i7By1Keac0D-PYdQc2zen9s2xfXNuv_wHYmakTA</recordid><startdate>20220526</startdate><enddate>20220526</enddate><creator>Watson, David M.</creator><creator>Johnston, Alan</creator><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220526</creationdate><title>A PCA-Based Active Appearance Model for Characterising Modes of Spatiotemporal Variation in Dynamic Facial Behaviours</title><author>Watson, David M. ; Johnston, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2398-b2511e8ceaa8d9ec7b0569572b2519a4348dbf8bb5caadef6843cc187ac578253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>ambient faces</topic><topic>computational neuroscience</topic><topic>dynamic faces</topic><topic>face perception</topic><topic>facial caricaturing</topic><topic>Psychology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watson, David M.</creatorcontrib><creatorcontrib>Johnston, Alan</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in psychology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watson, David M.</au><au>Johnston, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A PCA-Based Active Appearance Model for Characterising Modes of Spatiotemporal Variation in Dynamic Facial Behaviours</atitle><jtitle>Frontiers in psychology</jtitle><date>2022-05-26</date><risdate>2022</risdate><volume>13</volume><spage>880548</spage><epage>880548</epage><pages>880548-880548</pages><issn>1664-1078</issn><eissn>1664-1078</eissn><abstract>Faces carry key personal information about individuals, including cues to their identity, social traits, and emotional state. Much research to date has employed static images of faces taken under tightly controlled conditions yet faces in the real world are dynamic and experienced under ambient conditions. A common approach to studying key dimensions of facial variation is the use of facial caricatures. However, such techniques have again typically relied on static images, and the few examples of dynamic caricatures have relied on animating graphical head models. Here, we present a principal component analysis (PCA)-based active appearance model for capturing patterns of spatiotemporal variation in videos of natural dynamic facial behaviours. We demonstrate how this technique can be applied to generate dynamic anti-caricatures of biological motion patterns in facial behaviours. This technique could be extended to caricaturing other facial dimensions, or to more general analyses of spatiotemporal variations in dynamic faces.</abstract><pub>Frontiers Media S.A</pub><pmid>35719501</pmid><doi>10.3389/fpsyg.2022.880548</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1664-1078 |
ispartof | Frontiers in psychology, 2022-05, Vol.13, p.880548-880548 |
issn | 1664-1078 1664-1078 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_af3d8f28a7da494dbd375f5e7e64e7c7 |
source | PubMed Central |
subjects | ambient faces computational neuroscience dynamic faces face perception facial caricaturing Psychology |
title | A PCA-Based Active Appearance Model for Characterising Modes of Spatiotemporal Variation in Dynamic Facial Behaviours |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A07%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20PCA-Based%20Active%20Appearance%20Model%20for%20Characterising%20Modes%20of%20Spatiotemporal%20Variation%20in%20Dynamic%20Facial%20Behaviours&rft.jtitle=Frontiers%20in%20psychology&rft.au=Watson,%20David%20M.&rft.date=2022-05-26&rft.volume=13&rft.spage=880548&rft.epage=880548&rft.pages=880548-880548&rft.issn=1664-1078&rft.eissn=1664-1078&rft_id=info:doi/10.3389/fpsyg.2022.880548&rft_dat=%3Cproquest_doaj_%3E2678745260%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2398-b2511e8ceaa8d9ec7b0569572b2519a4348dbf8bb5caadef6843cc187ac578253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2678745260&rft_id=info:pmid/35719501&rfr_iscdi=true |