Loading…

An energy optimal schedule method for distribution network considering the access of distributed generation and energy storage

The access of large‐scale distributed generation (DG) easily leads to energy imbalance in distribution network. To deal with this issue, this paper proposes an energy optimal schedule method for distribution network considering the participation of source‐load‐storage aggregation groups (SAGs). Firs...

Full description

Saved in:
Bibliographic Details
Published in:IET generation, transmission & distribution transmission & distribution, 2023-07, Vol.17 (13), p.2996-3015
Main Authors: Liu, Keyan, Sheng, Wanxing, Li, Zhao, Liu, Fang, Liu, Qianyi, Huang, Yucong, Li, Yong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3755-d2782212ea118164fbbf632f734750fe8f113bde56fe4d812f3dd822886fde243
cites cdi_FETCH-LOGICAL-c3755-d2782212ea118164fbbf632f734750fe8f113bde56fe4d812f3dd822886fde243
container_end_page 3015
container_issue 13
container_start_page 2996
container_title IET generation, transmission & distribution
container_volume 17
creator Liu, Keyan
Sheng, Wanxing
Li, Zhao
Liu, Fang
Liu, Qianyi
Huang, Yucong
Li, Yong
description The access of large‐scale distributed generation (DG) easily leads to energy imbalance in distribution network. To deal with this issue, this paper proposes an energy optimal schedule method for distribution network considering the participation of source‐load‐storage aggregation groups (SAGs). Firstly, the system model consisting of distribution network layer and SAGs layer is established, and the schedule objectives and constraints of each layer are also given. Secondly, considering the fluctuation on the load side, a forecasting method based on Adaboost integrated convolutional neural networks and bidirectional long‐short term memory is proposed. Then, the improved sparrow search algorithm (ISSA) is proposed by using the tent map and Levy flight on the original sparrow search algorithm. At the same time, by introducing Pareto dominance relation and adaptive grid algorithm, the multi‐objective sparrow search algorithm (MOSSA) is derived. After that, a two‐layer optimization framework (ISSA–MOSSA) is proposed to solve the studied system. The simulation results verify the accuracy of the proposed load forecasting model, the superiority of ISSA as well as MOSSA, and the effectiveness of ISSA–MOSSA in solving the energy optimal schedule problem of the distribution system with the access of DG. An integrated load forecasting model based on convolutional neural networks and bidirectional long‐short term memory neural network is proposed to get higher forecast accuracy of the load. And the improved sparrow search algorithmmulti‐objective sparrow search algorithm framework is proposed to solve the energy optimal schedule issue for distribution network considering the participation of source‐load‐storage aggregation groups.
doi_str_mv 10.1049/gtd2.12855
format article
fullrecord <record><control><sourceid>wiley_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_af3de9eb08d84833aa2e36d4a4b26416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_af3de9eb08d84833aa2e36d4a4b26416</doaj_id><sourcerecordid>GTD212855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3755-d2782212ea118164fbbf632f734750fe8f113bde56fe4d812f3dd822886fde243</originalsourceid><addsrcrecordid>eNp9kU1PAjEURSdGExHd-Au6NgGnn1OWBBVJSNzguulMX4fiMCVtCWHjb3dg_Ni56ktz7nl5uVl2j_MxztnksU6GjDGRnF9kA1xwPJJiwi9_Z1lcZzcxbvKcc8GKQfY5bRG0EOoj8rvktrpBsVqD2TeAtpDW3iDrAzIupuDKfXK-RS2kgw8fqPJtdAaCa2uU1oB0VUGMyNs_HAyqT3p9DurW_CyLyQddw212ZXUT4e77HWbvL8-r2eto-TZfzKbLUUULzkeGFJIQTEBjLLFgtiytoMQWlBU8tyAtxrQ0wIUFZiQmlhrTJaQU1gBhdJgteq_xeqN2oTs0HJXXTp0_fKiVDslVDSjdZWECZS6NZJJSrQlQYZhmJREMi8710Luq4GMMYH99OFenFtSpBXVuoYNxDx9cA8d_SDVfPZE-8wUTc4yy</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An energy optimal schedule method for distribution network considering the access of distributed generation and energy storage</title><source>IET Digital Library</source><source>Wiley-Blackwell Open Access Titles(OpenAccess)</source><creator>Liu, Keyan ; Sheng, Wanxing ; Li, Zhao ; Liu, Fang ; Liu, Qianyi ; Huang, Yucong ; Li, Yong</creator><creatorcontrib>Liu, Keyan ; Sheng, Wanxing ; Li, Zhao ; Liu, Fang ; Liu, Qianyi ; Huang, Yucong ; Li, Yong</creatorcontrib><description>The access of large‐scale distributed generation (DG) easily leads to energy imbalance in distribution network. To deal with this issue, this paper proposes an energy optimal schedule method for distribution network considering the participation of source‐load‐storage aggregation groups (SAGs). Firstly, the system model consisting of distribution network layer and SAGs layer is established, and the schedule objectives and constraints of each layer are also given. Secondly, considering the fluctuation on the load side, a forecasting method based on Adaboost integrated convolutional neural networks and bidirectional long‐short term memory is proposed. Then, the improved sparrow search algorithm (ISSA) is proposed by using the tent map and Levy flight on the original sparrow search algorithm. At the same time, by introducing Pareto dominance relation and adaptive grid algorithm, the multi‐objective sparrow search algorithm (MOSSA) is derived. After that, a two‐layer optimization framework (ISSA–MOSSA) is proposed to solve the studied system. The simulation results verify the accuracy of the proposed load forecasting model, the superiority of ISSA as well as MOSSA, and the effectiveness of ISSA–MOSSA in solving the energy optimal schedule problem of the distribution system with the access of DG. An integrated load forecasting model based on convolutional neural networks and bidirectional long‐short term memory neural network is proposed to get higher forecast accuracy of the load. And the improved sparrow search algorithmmulti‐objective sparrow search algorithm framework is proposed to solve the energy optimal schedule issue for distribution network considering the participation of source‐load‐storage aggregation groups.</description><identifier>ISSN: 1751-8687</identifier><identifier>EISSN: 1751-8695</identifier><identifier>DOI: 10.1049/gtd2.12855</identifier><language>eng</language><publisher>Wiley</publisher><subject>distributed power generation ; distribution networks ; energy management systems ; load forecasting</subject><ispartof>IET generation, transmission &amp; distribution, 2023-07, Vol.17 (13), p.2996-3015</ispartof><rights>2023 The Authors. published by John Wiley &amp; Sons Ltd on behalf of The Institution of Engineering and Technology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3755-d2782212ea118164fbbf632f734750fe8f113bde56fe4d812f3dd822886fde243</citedby><cites>FETCH-LOGICAL-c3755-d2782212ea118164fbbf632f734750fe8f113bde56fe4d812f3dd822886fde243</cites><orcidid>0000-0003-0750-8344 ; 0000-0001-5382-8424 ; 0000-0002-1183-5359</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fgtd2.12855$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fgtd2.12855$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11562,27924,27925,46052,46476</link.rule.ids></links><search><creatorcontrib>Liu, Keyan</creatorcontrib><creatorcontrib>Sheng, Wanxing</creatorcontrib><creatorcontrib>Li, Zhao</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Liu, Qianyi</creatorcontrib><creatorcontrib>Huang, Yucong</creatorcontrib><creatorcontrib>Li, Yong</creatorcontrib><title>An energy optimal schedule method for distribution network considering the access of distributed generation and energy storage</title><title>IET generation, transmission &amp; distribution</title><description>The access of large‐scale distributed generation (DG) easily leads to energy imbalance in distribution network. To deal with this issue, this paper proposes an energy optimal schedule method for distribution network considering the participation of source‐load‐storage aggregation groups (SAGs). Firstly, the system model consisting of distribution network layer and SAGs layer is established, and the schedule objectives and constraints of each layer are also given. Secondly, considering the fluctuation on the load side, a forecasting method based on Adaboost integrated convolutional neural networks and bidirectional long‐short term memory is proposed. Then, the improved sparrow search algorithm (ISSA) is proposed by using the tent map and Levy flight on the original sparrow search algorithm. At the same time, by introducing Pareto dominance relation and adaptive grid algorithm, the multi‐objective sparrow search algorithm (MOSSA) is derived. After that, a two‐layer optimization framework (ISSA–MOSSA) is proposed to solve the studied system. The simulation results verify the accuracy of the proposed load forecasting model, the superiority of ISSA as well as MOSSA, and the effectiveness of ISSA–MOSSA in solving the energy optimal schedule problem of the distribution system with the access of DG. An integrated load forecasting model based on convolutional neural networks and bidirectional long‐short term memory neural network is proposed to get higher forecast accuracy of the load. And the improved sparrow search algorithmmulti‐objective sparrow search algorithm framework is proposed to solve the energy optimal schedule issue for distribution network considering the participation of source‐load‐storage aggregation groups.</description><subject>distributed power generation</subject><subject>distribution networks</subject><subject>energy management systems</subject><subject>load forecasting</subject><issn>1751-8687</issn><issn>1751-8695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1PAjEURSdGExHd-Au6NgGnn1OWBBVJSNzguulMX4fiMCVtCWHjb3dg_Ni56ktz7nl5uVl2j_MxztnksU6GjDGRnF9kA1xwPJJiwi9_Z1lcZzcxbvKcc8GKQfY5bRG0EOoj8rvktrpBsVqD2TeAtpDW3iDrAzIupuDKfXK-RS2kgw8fqPJtdAaCa2uU1oB0VUGMyNs_HAyqT3p9DurW_CyLyQddw212ZXUT4e77HWbvL8-r2eto-TZfzKbLUUULzkeGFJIQTEBjLLFgtiytoMQWlBU8tyAtxrQ0wIUFZiQmlhrTJaQU1gBhdJgteq_xeqN2oTs0HJXXTp0_fKiVDslVDSjdZWECZS6NZJJSrQlQYZhmJREMi8710Luq4GMMYH99OFenFtSpBXVuoYNxDx9cA8d_SDVfPZE-8wUTc4yy</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Liu, Keyan</creator><creator>Sheng, Wanxing</creator><creator>Li, Zhao</creator><creator>Liu, Fang</creator><creator>Liu, Qianyi</creator><creator>Huang, Yucong</creator><creator>Li, Yong</creator><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0750-8344</orcidid><orcidid>https://orcid.org/0000-0001-5382-8424</orcidid><orcidid>https://orcid.org/0000-0002-1183-5359</orcidid></search><sort><creationdate>202307</creationdate><title>An energy optimal schedule method for distribution network considering the access of distributed generation and energy storage</title><author>Liu, Keyan ; Sheng, Wanxing ; Li, Zhao ; Liu, Fang ; Liu, Qianyi ; Huang, Yucong ; Li, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3755-d2782212ea118164fbbf632f734750fe8f113bde56fe4d812f3dd822886fde243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>distributed power generation</topic><topic>distribution networks</topic><topic>energy management systems</topic><topic>load forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Keyan</creatorcontrib><creatorcontrib>Sheng, Wanxing</creatorcontrib><creatorcontrib>Li, Zhao</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Liu, Qianyi</creatorcontrib><creatorcontrib>Huang, Yucong</creatorcontrib><creatorcontrib>Li, Yong</creatorcontrib><collection>Wiley-Blackwell Open Access Titles(OpenAccess)</collection><collection>Wiley-Blackwell Open Access Backfiles (Open Access)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IET generation, transmission &amp; distribution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Keyan</au><au>Sheng, Wanxing</au><au>Li, Zhao</au><au>Liu, Fang</au><au>Liu, Qianyi</au><au>Huang, Yucong</au><au>Li, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An energy optimal schedule method for distribution network considering the access of distributed generation and energy storage</atitle><jtitle>IET generation, transmission &amp; distribution</jtitle><date>2023-07</date><risdate>2023</risdate><volume>17</volume><issue>13</issue><spage>2996</spage><epage>3015</epage><pages>2996-3015</pages><issn>1751-8687</issn><eissn>1751-8695</eissn><abstract>The access of large‐scale distributed generation (DG) easily leads to energy imbalance in distribution network. To deal with this issue, this paper proposes an energy optimal schedule method for distribution network considering the participation of source‐load‐storage aggregation groups (SAGs). Firstly, the system model consisting of distribution network layer and SAGs layer is established, and the schedule objectives and constraints of each layer are also given. Secondly, considering the fluctuation on the load side, a forecasting method based on Adaboost integrated convolutional neural networks and bidirectional long‐short term memory is proposed. Then, the improved sparrow search algorithm (ISSA) is proposed by using the tent map and Levy flight on the original sparrow search algorithm. At the same time, by introducing Pareto dominance relation and adaptive grid algorithm, the multi‐objective sparrow search algorithm (MOSSA) is derived. After that, a two‐layer optimization framework (ISSA–MOSSA) is proposed to solve the studied system. The simulation results verify the accuracy of the proposed load forecasting model, the superiority of ISSA as well as MOSSA, and the effectiveness of ISSA–MOSSA in solving the energy optimal schedule problem of the distribution system with the access of DG. An integrated load forecasting model based on convolutional neural networks and bidirectional long‐short term memory neural network is proposed to get higher forecast accuracy of the load. And the improved sparrow search algorithmmulti‐objective sparrow search algorithm framework is proposed to solve the energy optimal schedule issue for distribution network considering the participation of source‐load‐storage aggregation groups.</abstract><pub>Wiley</pub><doi>10.1049/gtd2.12855</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-0750-8344</orcidid><orcidid>https://orcid.org/0000-0001-5382-8424</orcidid><orcidid>https://orcid.org/0000-0002-1183-5359</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-8687
ispartof IET generation, transmission & distribution, 2023-07, Vol.17 (13), p.2996-3015
issn 1751-8687
1751-8695
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_af3de9eb08d84833aa2e36d4a4b26416
source IET Digital Library; Wiley-Blackwell Open Access Titles(OpenAccess)
subjects distributed power generation
distribution networks
energy management systems
load forecasting
title An energy optimal schedule method for distribution network considering the access of distributed generation and energy storage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A42%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20energy%20optimal%20schedule%20method%20for%20distribution%20network%20considering%20the%20access%20of%20distributed%20generation%20and%20energy%20storage&rft.jtitle=IET%20generation,%20transmission%20&%20distribution&rft.au=Liu,%20Keyan&rft.date=2023-07&rft.volume=17&rft.issue=13&rft.spage=2996&rft.epage=3015&rft.pages=2996-3015&rft.issn=1751-8687&rft.eissn=1751-8695&rft_id=info:doi/10.1049/gtd2.12855&rft_dat=%3Cwiley_doaj_%3EGTD212855%3C/wiley_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3755-d2782212ea118164fbbf632f734750fe8f113bde56fe4d812f3dd822886fde243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true