Loading…
Using graphene networks to build bioinspired self-monitoring ceramics
The properties of graphene open new opportunities for the fabrication of composites exhibiting unique structural and functional capabilities. However, to achieve this goal we should build materials with carefully designed architectures. Here, we describe the fabrication of ceramic-graphene composite...
Saved in:
Published in: | Nature communications 2017-02, Vol.8 (1), p.14425-14425, Article 14425 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c612t-3b45d79893fd48d8720b272308fe6655b4c5eaef71cdf209f30c08dfb96af7923 |
---|---|
cites | cdi_FETCH-LOGICAL-c612t-3b45d79893fd48d8720b272308fe6655b4c5eaef71cdf209f30c08dfb96af7923 |
container_end_page | 14425 |
container_issue | 1 |
container_start_page | 14425 |
container_title | Nature communications |
container_volume | 8 |
creator | Picot, Olivier T. Rocha, Victoria G. Ferraro, Claudio Ni, Na D’Elia, Eleonora Meille, Sylvain Chevalier, Jerome Saunders, Theo Peijs, Ton Reece, Mike J. Saiz, Eduardo |
description | The properties of graphene open new opportunities for the fabrication of composites exhibiting unique structural and functional capabilities. However, to achieve this goal we should build materials with carefully designed architectures. Here, we describe the fabrication of ceramic-graphene composites by combining graphene foams with pre-ceramic polymers and spark plasma sintering. The result is a material containing an interconnected, microscopic network of very thin (20–30 nm), electrically conductive, carbon interfaces. This network generates electrical conductivities up to two orders of magnitude higher than those of other ceramics with similar graphene or carbon nanotube contents and can be used to monitor ‘
in situ
’ structural integrity. In addition, it directs crack propagation, promoting stable crack growth and increasing the fracture resistance by an order of magnitude. These results demonstrate that the rational integration of nanomaterials could be a fruitful path towards building composites combining unique mechanical and functional performances.
Micro- and nanostructures found in nature can be adopted to new uses and materials in engineered composites. Here authors demonstrate large enhancements in toughness and electrical conductivity in a ceramic upon addition of graphene at low (1 volume %) levels. |
doi_str_mv | 10.1038/ncomms14425 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_af4453c3c1ea4d1b92c6d9398b890322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_af4453c3c1ea4d1b92c6d9398b890322</doaj_id><sourcerecordid>1866688909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c612t-3b45d79893fd48d8720b272308fe6655b4c5eaef71cdf209f30c08dfb96af7923</originalsourceid><addsrcrecordid>eNptkktv1DAQgC1ERavSE3cUiQsIAn7HviBVVaGVVuJCz5bjx66XxA52UsS_J2lKta3qi63x52_G9gDwBsHPCBLxJZrU9wVRitkLcIIhRTVqMHl5sD4GZ6Xs4TyIRILSV-AYCyQQQ-IEXN6UELfVNuth56Krohv_pPyrVGOq2il0tmpDCrEMITtbFdf5uk8xjCkvx4zLug-mvAZHXnfFnd3Pp-Dm2-XPi6t68-P79cX5pjYc4bEmLWW2kUISb6mwosGwxXOFUHjHOWMtNcxp5xtkrMdQegINFNa3kmvfSExOwfXqtUnv1ZBDr_NflXRQd4GUt0rnMZjOKe0pZcQQg5ymFrUSG24lkaIVEhK8uL6urmFqe2eNi2PW3SPp450YdmqbbhUjUArGZ8GHVbB7cuzqfKOWGES8aQQjt2hm398ny-n35Mqo-lCM6zodXZqKQoJzLubK5Iy-e4Lu05Tj_Kx3FMaiaRbq40qZnErJzj9UgKBaOkMddMZMvz286wP7vw9m4NMKlGH5WJcPkj7j-wd_SsMh</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1866228779</pqid></control><display><type>article</type><title>Using graphene networks to build bioinspired self-monitoring ceramics</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><source>Nature Journals Online</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Picot, Olivier T. ; Rocha, Victoria G. ; Ferraro, Claudio ; Ni, Na ; D’Elia, Eleonora ; Meille, Sylvain ; Chevalier, Jerome ; Saunders, Theo ; Peijs, Ton ; Reece, Mike J. ; Saiz, Eduardo</creator><creatorcontrib>Picot, Olivier T. ; Rocha, Victoria G. ; Ferraro, Claudio ; Ni, Na ; D’Elia, Eleonora ; Meille, Sylvain ; Chevalier, Jerome ; Saunders, Theo ; Peijs, Ton ; Reece, Mike J. ; Saiz, Eduardo</creatorcontrib><description>The properties of graphene open new opportunities for the fabrication of composites exhibiting unique structural and functional capabilities. However, to achieve this goal we should build materials with carefully designed architectures. Here, we describe the fabrication of ceramic-graphene composites by combining graphene foams with pre-ceramic polymers and spark plasma sintering. The result is a material containing an interconnected, microscopic network of very thin (20–30 nm), electrically conductive, carbon interfaces. This network generates electrical conductivities up to two orders of magnitude higher than those of other ceramics with similar graphene or carbon nanotube contents and can be used to monitor ‘
in situ
’ structural integrity. In addition, it directs crack propagation, promoting stable crack growth and increasing the fracture resistance by an order of magnitude. These results demonstrate that the rational integration of nanomaterials could be a fruitful path towards building composites combining unique mechanical and functional performances.
Micro- and nanostructures found in nature can be adopted to new uses and materials in engineered composites. Here authors demonstrate large enhancements in toughness and electrical conductivity in a ceramic upon addition of graphene at low (1 volume %) levels.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms14425</identifier><identifier>PMID: 28181518</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/133 ; 140/146 ; 639/301/1023/1025 ; 639/301/357/918/1053 ; Carbon ; Ceramics ; Crack propagation ; Design ; Engineering ; Engineering Sciences ; Fractures ; Graphene ; Humanities and Social Sciences ; multidisciplinary ; Nanomaterials ; Plasma sintering ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2017-02, Vol.8 (1), p.14425-14425, Article 14425</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Feb 2017</rights><rights>Attribution</rights><rights>Copyright © 2017, The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c612t-3b45d79893fd48d8720b272308fe6655b4c5eaef71cdf209f30c08dfb96af7923</citedby><cites>FETCH-LOGICAL-c612t-3b45d79893fd48d8720b272308fe6655b4c5eaef71cdf209f30c08dfb96af7923</cites><orcidid>0000-0001-6125-8556 ; 0000-0002-4553-1206 ; 0000-0001-8546-6149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1866228779/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1866228779?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28181518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01677853$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Picot, Olivier T.</creatorcontrib><creatorcontrib>Rocha, Victoria G.</creatorcontrib><creatorcontrib>Ferraro, Claudio</creatorcontrib><creatorcontrib>Ni, Na</creatorcontrib><creatorcontrib>D’Elia, Eleonora</creatorcontrib><creatorcontrib>Meille, Sylvain</creatorcontrib><creatorcontrib>Chevalier, Jerome</creatorcontrib><creatorcontrib>Saunders, Theo</creatorcontrib><creatorcontrib>Peijs, Ton</creatorcontrib><creatorcontrib>Reece, Mike J.</creatorcontrib><creatorcontrib>Saiz, Eduardo</creatorcontrib><title>Using graphene networks to build bioinspired self-monitoring ceramics</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The properties of graphene open new opportunities for the fabrication of composites exhibiting unique structural and functional capabilities. However, to achieve this goal we should build materials with carefully designed architectures. Here, we describe the fabrication of ceramic-graphene composites by combining graphene foams with pre-ceramic polymers and spark plasma sintering. The result is a material containing an interconnected, microscopic network of very thin (20–30 nm), electrically conductive, carbon interfaces. This network generates electrical conductivities up to two orders of magnitude higher than those of other ceramics with similar graphene or carbon nanotube contents and can be used to monitor ‘
in situ
’ structural integrity. In addition, it directs crack propagation, promoting stable crack growth and increasing the fracture resistance by an order of magnitude. These results demonstrate that the rational integration of nanomaterials could be a fruitful path towards building composites combining unique mechanical and functional performances.
Micro- and nanostructures found in nature can be adopted to new uses and materials in engineered composites. Here authors demonstrate large enhancements in toughness and electrical conductivity in a ceramic upon addition of graphene at low (1 volume %) levels.</description><subject>140/133</subject><subject>140/146</subject><subject>639/301/1023/1025</subject><subject>639/301/357/918/1053</subject><subject>Carbon</subject><subject>Ceramics</subject><subject>Crack propagation</subject><subject>Design</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Fractures</subject><subject>Graphene</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Nanomaterials</subject><subject>Plasma sintering</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkktv1DAQgC1ERavSE3cUiQsIAn7HviBVVaGVVuJCz5bjx66XxA52UsS_J2lKta3qi63x52_G9gDwBsHPCBLxJZrU9wVRitkLcIIhRTVqMHl5sD4GZ6Xs4TyIRILSV-AYCyQQQ-IEXN6UELfVNuth56Krohv_pPyrVGOq2il0tmpDCrEMITtbFdf5uk8xjCkvx4zLug-mvAZHXnfFnd3Pp-Dm2-XPi6t68-P79cX5pjYc4bEmLWW2kUISb6mwosGwxXOFUHjHOWMtNcxp5xtkrMdQegINFNa3kmvfSExOwfXqtUnv1ZBDr_NflXRQd4GUt0rnMZjOKe0pZcQQg5ymFrUSG24lkaIVEhK8uL6urmFqe2eNi2PW3SPp450YdmqbbhUjUArGZ8GHVbB7cuzqfKOWGES8aQQjt2hm398ny-n35Mqo-lCM6zodXZqKQoJzLubK5Iy-e4Lu05Tj_Kx3FMaiaRbq40qZnErJzj9UgKBaOkMddMZMvz286wP7vw9m4NMKlGH5WJcPkj7j-wd_SsMh</recordid><startdate>20170209</startdate><enddate>20170209</enddate><creator>Picot, Olivier T.</creator><creator>Rocha, Victoria G.</creator><creator>Ferraro, Claudio</creator><creator>Ni, Na</creator><creator>D’Elia, Eleonora</creator><creator>Meille, Sylvain</creator><creator>Chevalier, Jerome</creator><creator>Saunders, Theo</creator><creator>Peijs, Ton</creator><creator>Reece, Mike J.</creator><creator>Saiz, Eduardo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6125-8556</orcidid><orcidid>https://orcid.org/0000-0002-4553-1206</orcidid><orcidid>https://orcid.org/0000-0001-8546-6149</orcidid></search><sort><creationdate>20170209</creationdate><title>Using graphene networks to build bioinspired self-monitoring ceramics</title><author>Picot, Olivier T. ; Rocha, Victoria G. ; Ferraro, Claudio ; Ni, Na ; D’Elia, Eleonora ; Meille, Sylvain ; Chevalier, Jerome ; Saunders, Theo ; Peijs, Ton ; Reece, Mike J. ; Saiz, Eduardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c612t-3b45d79893fd48d8720b272308fe6655b4c5eaef71cdf209f30c08dfb96af7923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>140/133</topic><topic>140/146</topic><topic>639/301/1023/1025</topic><topic>639/301/357/918/1053</topic><topic>Carbon</topic><topic>Ceramics</topic><topic>Crack propagation</topic><topic>Design</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Fractures</topic><topic>Graphene</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Nanomaterials</topic><topic>Plasma sintering</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Picot, Olivier T.</creatorcontrib><creatorcontrib>Rocha, Victoria G.</creatorcontrib><creatorcontrib>Ferraro, Claudio</creatorcontrib><creatorcontrib>Ni, Na</creatorcontrib><creatorcontrib>D’Elia, Eleonora</creatorcontrib><creatorcontrib>Meille, Sylvain</creatorcontrib><creatorcontrib>Chevalier, Jerome</creatorcontrib><creatorcontrib>Saunders, Theo</creatorcontrib><creatorcontrib>Peijs, Ton</creatorcontrib><creatorcontrib>Reece, Mike J.</creatorcontrib><creatorcontrib>Saiz, Eduardo</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Picot, Olivier T.</au><au>Rocha, Victoria G.</au><au>Ferraro, Claudio</au><au>Ni, Na</au><au>D’Elia, Eleonora</au><au>Meille, Sylvain</au><au>Chevalier, Jerome</au><au>Saunders, Theo</au><au>Peijs, Ton</au><au>Reece, Mike J.</au><au>Saiz, Eduardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using graphene networks to build bioinspired self-monitoring ceramics</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2017-02-09</date><risdate>2017</risdate><volume>8</volume><issue>1</issue><spage>14425</spage><epage>14425</epage><pages>14425-14425</pages><artnum>14425</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The properties of graphene open new opportunities for the fabrication of composites exhibiting unique structural and functional capabilities. However, to achieve this goal we should build materials with carefully designed architectures. Here, we describe the fabrication of ceramic-graphene composites by combining graphene foams with pre-ceramic polymers and spark plasma sintering. The result is a material containing an interconnected, microscopic network of very thin (20–30 nm), electrically conductive, carbon interfaces. This network generates electrical conductivities up to two orders of magnitude higher than those of other ceramics with similar graphene or carbon nanotube contents and can be used to monitor ‘
in situ
’ structural integrity. In addition, it directs crack propagation, promoting stable crack growth and increasing the fracture resistance by an order of magnitude. These results demonstrate that the rational integration of nanomaterials could be a fruitful path towards building composites combining unique mechanical and functional performances.
Micro- and nanostructures found in nature can be adopted to new uses and materials in engineered composites. Here authors demonstrate large enhancements in toughness and electrical conductivity in a ceramic upon addition of graphene at low (1 volume %) levels.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28181518</pmid><doi>10.1038/ncomms14425</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6125-8556</orcidid><orcidid>https://orcid.org/0000-0002-4553-1206</orcidid><orcidid>https://orcid.org/0000-0001-8546-6149</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2017-02, Vol.8 (1), p.14425-14425, Article 14425 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_af4453c3c1ea4d1b92c6d9398b890322 |
source | PMC (PubMed Central); Publicly Available Content (ProQuest); Nature Journals Online; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 140/133 140/146 639/301/1023/1025 639/301/357/918/1053 Carbon Ceramics Crack propagation Design Engineering Engineering Sciences Fractures Graphene Humanities and Social Sciences multidisciplinary Nanomaterials Plasma sintering Science Science (multidisciplinary) |
title | Using graphene networks to build bioinspired self-monitoring ceramics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A35%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20graphene%20networks%20to%20build%20bioinspired%20self-monitoring%20ceramics&rft.jtitle=Nature%20communications&rft.au=Picot,%20Olivier%20T.&rft.date=2017-02-09&rft.volume=8&rft.issue=1&rft.spage=14425&rft.epage=14425&rft.pages=14425-14425&rft.artnum=14425&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms14425&rft_dat=%3Cproquest_doaj_%3E1866688909%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c612t-3b45d79893fd48d8720b272308fe6655b4c5eaef71cdf209f30c08dfb96af7923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1866228779&rft_id=info:pmid/28181518&rfr_iscdi=true |