Loading…

Using graphene networks to build bioinspired self-monitoring ceramics

The properties of graphene open new opportunities for the fabrication of composites exhibiting unique structural and functional capabilities. However, to achieve this goal we should build materials with carefully designed architectures. Here, we describe the fabrication of ceramic-graphene composite...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2017-02, Vol.8 (1), p.14425-14425, Article 14425
Main Authors: Picot, Olivier T., Rocha, Victoria G., Ferraro, Claudio, Ni, Na, D’Elia, Eleonora, Meille, Sylvain, Chevalier, Jerome, Saunders, Theo, Peijs, Ton, Reece, Mike J., Saiz, Eduardo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c612t-3b45d79893fd48d8720b272308fe6655b4c5eaef71cdf209f30c08dfb96af7923
cites cdi_FETCH-LOGICAL-c612t-3b45d79893fd48d8720b272308fe6655b4c5eaef71cdf209f30c08dfb96af7923
container_end_page 14425
container_issue 1
container_start_page 14425
container_title Nature communications
container_volume 8
creator Picot, Olivier T.
Rocha, Victoria G.
Ferraro, Claudio
Ni, Na
D’Elia, Eleonora
Meille, Sylvain
Chevalier, Jerome
Saunders, Theo
Peijs, Ton
Reece, Mike J.
Saiz, Eduardo
description The properties of graphene open new opportunities for the fabrication of composites exhibiting unique structural and functional capabilities. However, to achieve this goal we should build materials with carefully designed architectures. Here, we describe the fabrication of ceramic-graphene composites by combining graphene foams with pre-ceramic polymers and spark plasma sintering. The result is a material containing an interconnected, microscopic network of very thin (20–30 nm), electrically conductive, carbon interfaces. This network generates electrical conductivities up to two orders of magnitude higher than those of other ceramics with similar graphene or carbon nanotube contents and can be used to monitor ‘ in situ ’ structural integrity. In addition, it directs crack propagation, promoting stable crack growth and increasing the fracture resistance by an order of magnitude. These results demonstrate that the rational integration of nanomaterials could be a fruitful path towards building composites combining unique mechanical and functional performances. Micro- and nanostructures found in nature can be adopted to new uses and materials in engineered composites. Here authors demonstrate large enhancements in toughness and electrical conductivity in a ceramic upon addition of graphene at low (1 volume %) levels.
doi_str_mv 10.1038/ncomms14425
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_af4453c3c1ea4d1b92c6d9398b890322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_af4453c3c1ea4d1b92c6d9398b890322</doaj_id><sourcerecordid>1866688909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c612t-3b45d79893fd48d8720b272308fe6655b4c5eaef71cdf209f30c08dfb96af7923</originalsourceid><addsrcrecordid>eNptkktv1DAQgC1ERavSE3cUiQsIAn7HviBVVaGVVuJCz5bjx66XxA52UsS_J2lKta3qi63x52_G9gDwBsHPCBLxJZrU9wVRitkLcIIhRTVqMHl5sD4GZ6Xs4TyIRILSV-AYCyQQQ-IEXN6UELfVNuth56Krohv_pPyrVGOq2il0tmpDCrEMITtbFdf5uk8xjCkvx4zLug-mvAZHXnfFnd3Pp-Dm2-XPi6t68-P79cX5pjYc4bEmLWW2kUISb6mwosGwxXOFUHjHOWMtNcxp5xtkrMdQegINFNa3kmvfSExOwfXqtUnv1ZBDr_NflXRQd4GUt0rnMZjOKe0pZcQQg5ymFrUSG24lkaIVEhK8uL6urmFqe2eNi2PW3SPp450YdmqbbhUjUArGZ8GHVbB7cuzqfKOWGES8aQQjt2hm398ny-n35Mqo-lCM6zodXZqKQoJzLubK5Iy-e4Lu05Tj_Kx3FMaiaRbq40qZnErJzj9UgKBaOkMddMZMvz286wP7vw9m4NMKlGH5WJcPkj7j-wd_SsMh</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1866228779</pqid></control><display><type>article</type><title>Using graphene networks to build bioinspired self-monitoring ceramics</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><source>Nature Journals Online</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Picot, Olivier T. ; Rocha, Victoria G. ; Ferraro, Claudio ; Ni, Na ; D’Elia, Eleonora ; Meille, Sylvain ; Chevalier, Jerome ; Saunders, Theo ; Peijs, Ton ; Reece, Mike J. ; Saiz, Eduardo</creator><creatorcontrib>Picot, Olivier T. ; Rocha, Victoria G. ; Ferraro, Claudio ; Ni, Na ; D’Elia, Eleonora ; Meille, Sylvain ; Chevalier, Jerome ; Saunders, Theo ; Peijs, Ton ; Reece, Mike J. ; Saiz, Eduardo</creatorcontrib><description>The properties of graphene open new opportunities for the fabrication of composites exhibiting unique structural and functional capabilities. However, to achieve this goal we should build materials with carefully designed architectures. Here, we describe the fabrication of ceramic-graphene composites by combining graphene foams with pre-ceramic polymers and spark plasma sintering. The result is a material containing an interconnected, microscopic network of very thin (20–30 nm), electrically conductive, carbon interfaces. This network generates electrical conductivities up to two orders of magnitude higher than those of other ceramics with similar graphene or carbon nanotube contents and can be used to monitor ‘ in situ ’ structural integrity. In addition, it directs crack propagation, promoting stable crack growth and increasing the fracture resistance by an order of magnitude. These results demonstrate that the rational integration of nanomaterials could be a fruitful path towards building composites combining unique mechanical and functional performances. Micro- and nanostructures found in nature can be adopted to new uses and materials in engineered composites. Here authors demonstrate large enhancements in toughness and electrical conductivity in a ceramic upon addition of graphene at low (1 volume %) levels.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms14425</identifier><identifier>PMID: 28181518</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/133 ; 140/146 ; 639/301/1023/1025 ; 639/301/357/918/1053 ; Carbon ; Ceramics ; Crack propagation ; Design ; Engineering ; Engineering Sciences ; Fractures ; Graphene ; Humanities and Social Sciences ; multidisciplinary ; Nanomaterials ; Plasma sintering ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2017-02, Vol.8 (1), p.14425-14425, Article 14425</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Feb 2017</rights><rights>Attribution</rights><rights>Copyright © 2017, The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c612t-3b45d79893fd48d8720b272308fe6655b4c5eaef71cdf209f30c08dfb96af7923</citedby><cites>FETCH-LOGICAL-c612t-3b45d79893fd48d8720b272308fe6655b4c5eaef71cdf209f30c08dfb96af7923</cites><orcidid>0000-0001-6125-8556 ; 0000-0002-4553-1206 ; 0000-0001-8546-6149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1866228779/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1866228779?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28181518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01677853$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Picot, Olivier T.</creatorcontrib><creatorcontrib>Rocha, Victoria G.</creatorcontrib><creatorcontrib>Ferraro, Claudio</creatorcontrib><creatorcontrib>Ni, Na</creatorcontrib><creatorcontrib>D’Elia, Eleonora</creatorcontrib><creatorcontrib>Meille, Sylvain</creatorcontrib><creatorcontrib>Chevalier, Jerome</creatorcontrib><creatorcontrib>Saunders, Theo</creatorcontrib><creatorcontrib>Peijs, Ton</creatorcontrib><creatorcontrib>Reece, Mike J.</creatorcontrib><creatorcontrib>Saiz, Eduardo</creatorcontrib><title>Using graphene networks to build bioinspired self-monitoring ceramics</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The properties of graphene open new opportunities for the fabrication of composites exhibiting unique structural and functional capabilities. However, to achieve this goal we should build materials with carefully designed architectures. Here, we describe the fabrication of ceramic-graphene composites by combining graphene foams with pre-ceramic polymers and spark plasma sintering. The result is a material containing an interconnected, microscopic network of very thin (20–30 nm), electrically conductive, carbon interfaces. This network generates electrical conductivities up to two orders of magnitude higher than those of other ceramics with similar graphene or carbon nanotube contents and can be used to monitor ‘ in situ ’ structural integrity. In addition, it directs crack propagation, promoting stable crack growth and increasing the fracture resistance by an order of magnitude. These results demonstrate that the rational integration of nanomaterials could be a fruitful path towards building composites combining unique mechanical and functional performances. Micro- and nanostructures found in nature can be adopted to new uses and materials in engineered composites. Here authors demonstrate large enhancements in toughness and electrical conductivity in a ceramic upon addition of graphene at low (1 volume %) levels.</description><subject>140/133</subject><subject>140/146</subject><subject>639/301/1023/1025</subject><subject>639/301/357/918/1053</subject><subject>Carbon</subject><subject>Ceramics</subject><subject>Crack propagation</subject><subject>Design</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Fractures</subject><subject>Graphene</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Nanomaterials</subject><subject>Plasma sintering</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkktv1DAQgC1ERavSE3cUiQsIAn7HviBVVaGVVuJCz5bjx66XxA52UsS_J2lKta3qi63x52_G9gDwBsHPCBLxJZrU9wVRitkLcIIhRTVqMHl5sD4GZ6Xs4TyIRILSV-AYCyQQQ-IEXN6UELfVNuth56Krohv_pPyrVGOq2il0tmpDCrEMITtbFdf5uk8xjCkvx4zLug-mvAZHXnfFnd3Pp-Dm2-XPi6t68-P79cX5pjYc4bEmLWW2kUISb6mwosGwxXOFUHjHOWMtNcxp5xtkrMdQegINFNa3kmvfSExOwfXqtUnv1ZBDr_NflXRQd4GUt0rnMZjOKe0pZcQQg5ymFrUSG24lkaIVEhK8uL6urmFqe2eNi2PW3SPp450YdmqbbhUjUArGZ8GHVbB7cuzqfKOWGES8aQQjt2hm398ny-n35Mqo-lCM6zodXZqKQoJzLubK5Iy-e4Lu05Tj_Kx3FMaiaRbq40qZnErJzj9UgKBaOkMddMZMvz286wP7vw9m4NMKlGH5WJcPkj7j-wd_SsMh</recordid><startdate>20170209</startdate><enddate>20170209</enddate><creator>Picot, Olivier T.</creator><creator>Rocha, Victoria G.</creator><creator>Ferraro, Claudio</creator><creator>Ni, Na</creator><creator>D’Elia, Eleonora</creator><creator>Meille, Sylvain</creator><creator>Chevalier, Jerome</creator><creator>Saunders, Theo</creator><creator>Peijs, Ton</creator><creator>Reece, Mike J.</creator><creator>Saiz, Eduardo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6125-8556</orcidid><orcidid>https://orcid.org/0000-0002-4553-1206</orcidid><orcidid>https://orcid.org/0000-0001-8546-6149</orcidid></search><sort><creationdate>20170209</creationdate><title>Using graphene networks to build bioinspired self-monitoring ceramics</title><author>Picot, Olivier T. ; Rocha, Victoria G. ; Ferraro, Claudio ; Ni, Na ; D’Elia, Eleonora ; Meille, Sylvain ; Chevalier, Jerome ; Saunders, Theo ; Peijs, Ton ; Reece, Mike J. ; Saiz, Eduardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c612t-3b45d79893fd48d8720b272308fe6655b4c5eaef71cdf209f30c08dfb96af7923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>140/133</topic><topic>140/146</topic><topic>639/301/1023/1025</topic><topic>639/301/357/918/1053</topic><topic>Carbon</topic><topic>Ceramics</topic><topic>Crack propagation</topic><topic>Design</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Fractures</topic><topic>Graphene</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Nanomaterials</topic><topic>Plasma sintering</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Picot, Olivier T.</creatorcontrib><creatorcontrib>Rocha, Victoria G.</creatorcontrib><creatorcontrib>Ferraro, Claudio</creatorcontrib><creatorcontrib>Ni, Na</creatorcontrib><creatorcontrib>D’Elia, Eleonora</creatorcontrib><creatorcontrib>Meille, Sylvain</creatorcontrib><creatorcontrib>Chevalier, Jerome</creatorcontrib><creatorcontrib>Saunders, Theo</creatorcontrib><creatorcontrib>Peijs, Ton</creatorcontrib><creatorcontrib>Reece, Mike J.</creatorcontrib><creatorcontrib>Saiz, Eduardo</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Picot, Olivier T.</au><au>Rocha, Victoria G.</au><au>Ferraro, Claudio</au><au>Ni, Na</au><au>D’Elia, Eleonora</au><au>Meille, Sylvain</au><au>Chevalier, Jerome</au><au>Saunders, Theo</au><au>Peijs, Ton</au><au>Reece, Mike J.</au><au>Saiz, Eduardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using graphene networks to build bioinspired self-monitoring ceramics</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2017-02-09</date><risdate>2017</risdate><volume>8</volume><issue>1</issue><spage>14425</spage><epage>14425</epage><pages>14425-14425</pages><artnum>14425</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The properties of graphene open new opportunities for the fabrication of composites exhibiting unique structural and functional capabilities. However, to achieve this goal we should build materials with carefully designed architectures. Here, we describe the fabrication of ceramic-graphene composites by combining graphene foams with pre-ceramic polymers and spark plasma sintering. The result is a material containing an interconnected, microscopic network of very thin (20–30 nm), electrically conductive, carbon interfaces. This network generates electrical conductivities up to two orders of magnitude higher than those of other ceramics with similar graphene or carbon nanotube contents and can be used to monitor ‘ in situ ’ structural integrity. In addition, it directs crack propagation, promoting stable crack growth and increasing the fracture resistance by an order of magnitude. These results demonstrate that the rational integration of nanomaterials could be a fruitful path towards building composites combining unique mechanical and functional performances. Micro- and nanostructures found in nature can be adopted to new uses and materials in engineered composites. Here authors demonstrate large enhancements in toughness and electrical conductivity in a ceramic upon addition of graphene at low (1 volume %) levels.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28181518</pmid><doi>10.1038/ncomms14425</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6125-8556</orcidid><orcidid>https://orcid.org/0000-0002-4553-1206</orcidid><orcidid>https://orcid.org/0000-0001-8546-6149</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2017-02, Vol.8 (1), p.14425-14425, Article 14425
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_af4453c3c1ea4d1b92c6d9398b890322
source PMC (PubMed Central); Publicly Available Content (ProQuest); Nature Journals Online; Springer Nature - nature.com Journals - Fully Open Access
subjects 140/133
140/146
639/301/1023/1025
639/301/357/918/1053
Carbon
Ceramics
Crack propagation
Design
Engineering
Engineering Sciences
Fractures
Graphene
Humanities and Social Sciences
multidisciplinary
Nanomaterials
Plasma sintering
Science
Science (multidisciplinary)
title Using graphene networks to build bioinspired self-monitoring ceramics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A35%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20graphene%20networks%20to%20build%20bioinspired%20self-monitoring%20ceramics&rft.jtitle=Nature%20communications&rft.au=Picot,%20Olivier%20T.&rft.date=2017-02-09&rft.volume=8&rft.issue=1&rft.spage=14425&rft.epage=14425&rft.pages=14425-14425&rft.artnum=14425&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms14425&rft_dat=%3Cproquest_doaj_%3E1866688909%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c612t-3b45d79893fd48d8720b272308fe6655b4c5eaef71cdf209f30c08dfb96af7923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1866228779&rft_id=info:pmid/28181518&rfr_iscdi=true