Loading…

Correlation Dimension Detects Causal Links in Coupled Dynamical Systems

It is becoming increasingly clear that causal analysis of dynamical systems requires different approaches than, for example, causal analysis of interconnected autoregressive processes. In this study, a correlation dimension estimated in reconstructed state spaces is used to detect causality. If dete...

Full description

Saved in:
Bibliographic Details
Published in:Entropy (Basel, Switzerland) Switzerland), 2019-08, Vol.21 (9), p.818
Main Author: Krakovská, Anna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c413t-f34a08a3703618f0bc091f252083e10278704ae087239a7d75e3d55bfdd2326b3
cites cdi_FETCH-LOGICAL-c413t-f34a08a3703618f0bc091f252083e10278704ae087239a7d75e3d55bfdd2326b3
container_end_page
container_issue 9
container_start_page 818
container_title Entropy (Basel, Switzerland)
container_volume 21
creator Krakovská, Anna
description It is becoming increasingly clear that causal analysis of dynamical systems requires different approaches than, for example, causal analysis of interconnected autoregressive processes. In this study, a correlation dimension estimated in reconstructed state spaces is used to detect causality. If deterministic dynamics plays a dominant role in data then the method based on the correlation dimension can serve as a fast and reliable way to reveal causal relationships between and within the systems. This study demonstrates that the method, unlike most other causal approaches, detects causality well, even for very weak links. It can also identify cases of uncoupled systems that are causally affected by a hidden common driver.
doi_str_mv 10.3390/e21090818
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_af445f6f05ba409d9e330cfcb440134e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_af445f6f05ba409d9e330cfcb440134e</doaj_id><sourcerecordid>2548386720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-f34a08a3703618f0bc091f252083e10278704ae087239a7d75e3d55bfdd2326b3</originalsourceid><addsrcrecordid>eNpVkU1r3DAQhk1JoPnoof_A0FMPm440kiVfCsX5aGAhh6RnIcujVFvb2kp2Yf99nN0Quqd5mfflmRmmKD4zuEKs4RtxBjVopj8UZ4uqVwIBTv7TH4vznDcAHDmrzoq7JqZEvZ1CHMvrMNCY94omclMuGztn25frMP7JZRjLJs7bnrryejfaIbjFetzliYZ8WZx622f69FYvil-3N0_Nz9X64e6--bFeOcFwWnkUFrRFBVgx7aF1UDPPJQeNxIArrUBYAq041lZ1ShJ2Ura-65aFqxYvivsDt4t2Y7YpDDbtTLTB7BsxPRubpuB6MtYLIX3lQbZWQN3VhAjOu1YIYChoYX0_sLZzO1DnaJyS7Y-gx84Yfpvn-M8oySQKtQC-vAFS_DtTnswmzmlc7jdcCo26UhyW1NdDyqWYcyL_PoGBeX2aeX8avgA0JYh8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548386720</pqid></control><display><type>article</type><title>Correlation Dimension Detects Causal Links in Coupled Dynamical Systems</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><creator>Krakovská, Anna</creator><creatorcontrib>Krakovská, Anna</creatorcontrib><description>It is becoming increasingly clear that causal analysis of dynamical systems requires different approaches than, for example, causal analysis of interconnected autoregressive processes. In this study, a correlation dimension estimated in reconstructed state spaces is used to detect causality. If deterministic dynamics plays a dominant role in data then the method based on the correlation dimension can serve as a fast and reliable way to reveal causal relationships between and within the systems. This study demonstrates that the method, unlike most other causal approaches, detects causality well, even for very weak links. It can also identify cases of uncoupled systems that are causally affected by a hidden common driver.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e21090818</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Autoregressive processes ; Causality ; Chaos theory ; common driver ; correlation dimension ; Dynamical systems ; Fractals ; Methods ; the arrow of time ; Time series</subject><ispartof>Entropy (Basel, Switzerland), 2019-08, Vol.21 (9), p.818</ispartof><rights>2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the author. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-f34a08a3703618f0bc091f252083e10278704ae087239a7d75e3d55bfdd2326b3</citedby><cites>FETCH-LOGICAL-c413t-f34a08a3703618f0bc091f252083e10278704ae087239a7d75e3d55bfdd2326b3</cites><orcidid>0000-0001-8071-8458</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548386720/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548386720?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,25736,27907,27908,36995,44573,53774,53776,74877</link.rule.ids></links><search><creatorcontrib>Krakovská, Anna</creatorcontrib><title>Correlation Dimension Detects Causal Links in Coupled Dynamical Systems</title><title>Entropy (Basel, Switzerland)</title><description>It is becoming increasingly clear that causal analysis of dynamical systems requires different approaches than, for example, causal analysis of interconnected autoregressive processes. In this study, a correlation dimension estimated in reconstructed state spaces is used to detect causality. If deterministic dynamics plays a dominant role in data then the method based on the correlation dimension can serve as a fast and reliable way to reveal causal relationships between and within the systems. This study demonstrates that the method, unlike most other causal approaches, detects causality well, even for very weak links. It can also identify cases of uncoupled systems that are causally affected by a hidden common driver.</description><subject>Autoregressive processes</subject><subject>Causality</subject><subject>Chaos theory</subject><subject>common driver</subject><subject>correlation dimension</subject><subject>Dynamical systems</subject><subject>Fractals</subject><subject>Methods</subject><subject>the arrow of time</subject><subject>Time series</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkU1r3DAQhk1JoPnoof_A0FMPm440kiVfCsX5aGAhh6RnIcujVFvb2kp2Yf99nN0Quqd5mfflmRmmKD4zuEKs4RtxBjVopj8UZ4uqVwIBTv7TH4vznDcAHDmrzoq7JqZEvZ1CHMvrMNCY94omclMuGztn25frMP7JZRjLJs7bnrryejfaIbjFetzliYZ8WZx622f69FYvil-3N0_Nz9X64e6--bFeOcFwWnkUFrRFBVgx7aF1UDPPJQeNxIArrUBYAq041lZ1ShJ2Ura-65aFqxYvivsDt4t2Y7YpDDbtTLTB7BsxPRubpuB6MtYLIX3lQbZWQN3VhAjOu1YIYChoYX0_sLZzO1DnaJyS7Y-gx84Yfpvn-M8oySQKtQC-vAFS_DtTnswmzmlc7jdcCo26UhyW1NdDyqWYcyL_PoGBeX2aeX8avgA0JYh8</recordid><startdate>20190821</startdate><enddate>20190821</enddate><creator>Krakovská, Anna</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8071-8458</orcidid></search><sort><creationdate>20190821</creationdate><title>Correlation Dimension Detects Causal Links in Coupled Dynamical Systems</title><author>Krakovská, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-f34a08a3703618f0bc091f252083e10278704ae087239a7d75e3d55bfdd2326b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Autoregressive processes</topic><topic>Causality</topic><topic>Chaos theory</topic><topic>common driver</topic><topic>correlation dimension</topic><topic>Dynamical systems</topic><topic>Fractals</topic><topic>Methods</topic><topic>the arrow of time</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krakovská, Anna</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krakovská, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlation Dimension Detects Causal Links in Coupled Dynamical Systems</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><date>2019-08-21</date><risdate>2019</risdate><volume>21</volume><issue>9</issue><spage>818</spage><pages>818-</pages><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>It is becoming increasingly clear that causal analysis of dynamical systems requires different approaches than, for example, causal analysis of interconnected autoregressive processes. In this study, a correlation dimension estimated in reconstructed state spaces is used to detect causality. If deterministic dynamics plays a dominant role in data then the method based on the correlation dimension can serve as a fast and reliable way to reveal causal relationships between and within the systems. This study demonstrates that the method, unlike most other causal approaches, detects causality well, even for very weak links. It can also identify cases of uncoupled systems that are causally affected by a hidden common driver.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/e21090818</doi><orcidid>https://orcid.org/0000-0001-8071-8458</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1099-4300
ispartof Entropy (Basel, Switzerland), 2019-08, Vol.21 (9), p.818
issn 1099-4300
1099-4300
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_af445f6f05ba409d9e330cfcb440134e
source Publicly Available Content Database; DOAJ Directory of Open Access Journals; PubMed Central
subjects Autoregressive processes
Causality
Chaos theory
common driver
correlation dimension
Dynamical systems
Fractals
Methods
the arrow of time
Time series
title Correlation Dimension Detects Causal Links in Coupled Dynamical Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A09%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlation%20Dimension%20Detects%20Causal%20Links%20in%20Coupled%20Dynamical%20Systems&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Krakovsk%C3%A1,%20Anna&rft.date=2019-08-21&rft.volume=21&rft.issue=9&rft.spage=818&rft.pages=818-&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e21090818&rft_dat=%3Cproquest_doaj_%3E2548386720%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c413t-f34a08a3703618f0bc091f252083e10278704ae087239a7d75e3d55bfdd2326b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548386720&rft_id=info:pmid/&rfr_iscdi=true