Loading…
Correlation Dimension Detects Causal Links in Coupled Dynamical Systems
It is becoming increasingly clear that causal analysis of dynamical systems requires different approaches than, for example, causal analysis of interconnected autoregressive processes. In this study, a correlation dimension estimated in reconstructed state spaces is used to detect causality. If dete...
Saved in:
Published in: | Entropy (Basel, Switzerland) Switzerland), 2019-08, Vol.21 (9), p.818 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c413t-f34a08a3703618f0bc091f252083e10278704ae087239a7d75e3d55bfdd2326b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c413t-f34a08a3703618f0bc091f252083e10278704ae087239a7d75e3d55bfdd2326b3 |
container_end_page | |
container_issue | 9 |
container_start_page | 818 |
container_title | Entropy (Basel, Switzerland) |
container_volume | 21 |
creator | Krakovská, Anna |
description | It is becoming increasingly clear that causal analysis of dynamical systems requires different approaches than, for example, causal analysis of interconnected autoregressive processes. In this study, a correlation dimension estimated in reconstructed state spaces is used to detect causality. If deterministic dynamics plays a dominant role in data then the method based on the correlation dimension can serve as a fast and reliable way to reveal causal relationships between and within the systems. This study demonstrates that the method, unlike most other causal approaches, detects causality well, even for very weak links. It can also identify cases of uncoupled systems that are causally affected by a hidden common driver. |
doi_str_mv | 10.3390/e21090818 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_af445f6f05ba409d9e330cfcb440134e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_af445f6f05ba409d9e330cfcb440134e</doaj_id><sourcerecordid>2548386720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-f34a08a3703618f0bc091f252083e10278704ae087239a7d75e3d55bfdd2326b3</originalsourceid><addsrcrecordid>eNpVkU1r3DAQhk1JoPnoof_A0FMPm440kiVfCsX5aGAhh6RnIcujVFvb2kp2Yf99nN0Quqd5mfflmRmmKD4zuEKs4RtxBjVopj8UZ4uqVwIBTv7TH4vznDcAHDmrzoq7JqZEvZ1CHMvrMNCY94omclMuGztn25frMP7JZRjLJs7bnrryejfaIbjFetzliYZ8WZx622f69FYvil-3N0_Nz9X64e6--bFeOcFwWnkUFrRFBVgx7aF1UDPPJQeNxIArrUBYAq041lZ1ShJ2Ura-65aFqxYvivsDt4t2Y7YpDDbtTLTB7BsxPRubpuB6MtYLIX3lQbZWQN3VhAjOu1YIYChoYX0_sLZzO1DnaJyS7Y-gx84Yfpvn-M8oySQKtQC-vAFS_DtTnswmzmlc7jdcCo26UhyW1NdDyqWYcyL_PoGBeX2aeX8avgA0JYh8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548386720</pqid></control><display><type>article</type><title>Correlation Dimension Detects Causal Links in Coupled Dynamical Systems</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><creator>Krakovská, Anna</creator><creatorcontrib>Krakovská, Anna</creatorcontrib><description>It is becoming increasingly clear that causal analysis of dynamical systems requires different approaches than, for example, causal analysis of interconnected autoregressive processes. In this study, a correlation dimension estimated in reconstructed state spaces is used to detect causality. If deterministic dynamics plays a dominant role in data then the method based on the correlation dimension can serve as a fast and reliable way to reveal causal relationships between and within the systems. This study demonstrates that the method, unlike most other causal approaches, detects causality well, even for very weak links. It can also identify cases of uncoupled systems that are causally affected by a hidden common driver.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e21090818</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Autoregressive processes ; Causality ; Chaos theory ; common driver ; correlation dimension ; Dynamical systems ; Fractals ; Methods ; the arrow of time ; Time series</subject><ispartof>Entropy (Basel, Switzerland), 2019-08, Vol.21 (9), p.818</ispartof><rights>2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the author. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-f34a08a3703618f0bc091f252083e10278704ae087239a7d75e3d55bfdd2326b3</citedby><cites>FETCH-LOGICAL-c413t-f34a08a3703618f0bc091f252083e10278704ae087239a7d75e3d55bfdd2326b3</cites><orcidid>0000-0001-8071-8458</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548386720/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548386720?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,25736,27907,27908,36995,44573,53774,53776,74877</link.rule.ids></links><search><creatorcontrib>Krakovská, Anna</creatorcontrib><title>Correlation Dimension Detects Causal Links in Coupled Dynamical Systems</title><title>Entropy (Basel, Switzerland)</title><description>It is becoming increasingly clear that causal analysis of dynamical systems requires different approaches than, for example, causal analysis of interconnected autoregressive processes. In this study, a correlation dimension estimated in reconstructed state spaces is used to detect causality. If deterministic dynamics plays a dominant role in data then the method based on the correlation dimension can serve as a fast and reliable way to reveal causal relationships between and within the systems. This study demonstrates that the method, unlike most other causal approaches, detects causality well, even for very weak links. It can also identify cases of uncoupled systems that are causally affected by a hidden common driver.</description><subject>Autoregressive processes</subject><subject>Causality</subject><subject>Chaos theory</subject><subject>common driver</subject><subject>correlation dimension</subject><subject>Dynamical systems</subject><subject>Fractals</subject><subject>Methods</subject><subject>the arrow of time</subject><subject>Time series</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkU1r3DAQhk1JoPnoof_A0FMPm440kiVfCsX5aGAhh6RnIcujVFvb2kp2Yf99nN0Quqd5mfflmRmmKD4zuEKs4RtxBjVopj8UZ4uqVwIBTv7TH4vznDcAHDmrzoq7JqZEvZ1CHMvrMNCY94omclMuGztn25frMP7JZRjLJs7bnrryejfaIbjFetzliYZ8WZx622f69FYvil-3N0_Nz9X64e6--bFeOcFwWnkUFrRFBVgx7aF1UDPPJQeNxIArrUBYAq041lZ1ShJ2Ura-65aFqxYvivsDt4t2Y7YpDDbtTLTB7BsxPRubpuB6MtYLIX3lQbZWQN3VhAjOu1YIYChoYX0_sLZzO1DnaJyS7Y-gx84Yfpvn-M8oySQKtQC-vAFS_DtTnswmzmlc7jdcCo26UhyW1NdDyqWYcyL_PoGBeX2aeX8avgA0JYh8</recordid><startdate>20190821</startdate><enddate>20190821</enddate><creator>Krakovská, Anna</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8071-8458</orcidid></search><sort><creationdate>20190821</creationdate><title>Correlation Dimension Detects Causal Links in Coupled Dynamical Systems</title><author>Krakovská, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-f34a08a3703618f0bc091f252083e10278704ae087239a7d75e3d55bfdd2326b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Autoregressive processes</topic><topic>Causality</topic><topic>Chaos theory</topic><topic>common driver</topic><topic>correlation dimension</topic><topic>Dynamical systems</topic><topic>Fractals</topic><topic>Methods</topic><topic>the arrow of time</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krakovská, Anna</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krakovská, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlation Dimension Detects Causal Links in Coupled Dynamical Systems</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><date>2019-08-21</date><risdate>2019</risdate><volume>21</volume><issue>9</issue><spage>818</spage><pages>818-</pages><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>It is becoming increasingly clear that causal analysis of dynamical systems requires different approaches than, for example, causal analysis of interconnected autoregressive processes. In this study, a correlation dimension estimated in reconstructed state spaces is used to detect causality. If deterministic dynamics plays a dominant role in data then the method based on the correlation dimension can serve as a fast and reliable way to reveal causal relationships between and within the systems. This study demonstrates that the method, unlike most other causal approaches, detects causality well, even for very weak links. It can also identify cases of uncoupled systems that are causally affected by a hidden common driver.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/e21090818</doi><orcidid>https://orcid.org/0000-0001-8071-8458</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1099-4300 |
ispartof | Entropy (Basel, Switzerland), 2019-08, Vol.21 (9), p.818 |
issn | 1099-4300 1099-4300 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_af445f6f05ba409d9e330cfcb440134e |
source | Publicly Available Content Database; DOAJ Directory of Open Access Journals; PubMed Central |
subjects | Autoregressive processes Causality Chaos theory common driver correlation dimension Dynamical systems Fractals Methods the arrow of time Time series |
title | Correlation Dimension Detects Causal Links in Coupled Dynamical Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A09%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlation%20Dimension%20Detects%20Causal%20Links%20in%20Coupled%20Dynamical%20Systems&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Krakovsk%C3%A1,%20Anna&rft.date=2019-08-21&rft.volume=21&rft.issue=9&rft.spage=818&rft.pages=818-&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e21090818&rft_dat=%3Cproquest_doaj_%3E2548386720%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c413t-f34a08a3703618f0bc091f252083e10278704ae087239a7d75e3d55bfdd2326b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548386720&rft_id=info:pmid/&rfr_iscdi=true |