Loading…

Ammonia for post-healing of formamidinium-based Perovskite films

Solvents employed for perovskite film fabrication not only play important roles in dissolving the precursors but also participate in crystallization process. High boiling point aprotic solvents with O-donor ligands have been extensively studied, but the formation of a highly uniform halide perovskit...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2022-07, Vol.13 (1), p.4417-10, Article 4417
Main Authors: Li, Zhipeng, Wang, Xiao, Wang, Zaiwei, Shao, Zhipeng, Hao, Lianzheng, Rao, Yi, Chen, Chen, Liu, Dachang, Zhao, Qiangqiang, Sun, Xiuhong, Gao, Caiyun, Zhang, Bingqian, Wang, Xianzhao, Wang, Li, Cui, Guanglei, Pang, Shuping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-9f5b8a553692cdbf90f1fb8c99691172d1c0a09cc2c39e8b331b70eaf87343cd3
cites cdi_FETCH-LOGICAL-c540t-9f5b8a553692cdbf90f1fb8c99691172d1c0a09cc2c39e8b331b70eaf87343cd3
container_end_page 10
container_issue 1
container_start_page 4417
container_title Nature communications
container_volume 13
creator Li, Zhipeng
Wang, Xiao
Wang, Zaiwei
Shao, Zhipeng
Hao, Lianzheng
Rao, Yi
Chen, Chen
Liu, Dachang
Zhao, Qiangqiang
Sun, Xiuhong
Gao, Caiyun
Zhang, Bingqian
Wang, Xianzhao
Wang, Li
Cui, Guanglei
Pang, Shuping
description Solvents employed for perovskite film fabrication not only play important roles in dissolving the precursors but also participate in crystallization process. High boiling point aprotic solvents with O-donor ligands have been extensively studied, but the formation of a highly uniform halide perovskite film still requires the participation of additives or an additional step to accelerate the nucleation rate. The volatile aliphatic methylamine with both coordinating ligands and hydrogen protons as solvent or post-healing gas facilitates the process of methylamine-based perovskite films with high crystallinity, few defects, and easy large-scale fabrication as well. However, the attempt in formamidinium-containing perovskites is challenged heretofore. Here, we reveal that the degradation of formamidinium-containing perovskites in aliphatic amines environment results from the transimination reaction of formamidinium cation and aliphatic amines along with the formation of ammonia. Based on this mechanism, ammonia is selected as a post-healing gas for a highly uniform, compact formamidinium-based perovskite films. In particular, low temperature is proved to be crucial to enable formamidinium-based perovskite materials to absorb enough ammonia molecules and form a liquid intermediate state which is the key to eliminating voids in raw films. As a result, the champion perovskite solar cell based on ammonia post-healing achieves a power conversion efficiency of 23.21% with excellent reproducibility. Especially the module power conversion efficiency with 14 cm 2 active area is over 20%. This ammonia post-healing treatment potentially makes it easier to upscale fabrication of highly efficient formamidinium-based devices. Solvents used for perovskite film fabrication not only dissolve the precursors but also play a role in the crystallization process. Here, authors study the role of transamination reactions in the underlying degradation mechanism of formamidinium-containing perovskites in aliphatic amines environment.
doi_str_mv 10.1038/s41467-022-32047-z
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_af58aa885206469fbf38883831872796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_af58aa885206469fbf38883831872796</doaj_id><sourcerecordid>2696859749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-9f5b8a553692cdbf90f1fb8c99691172d1c0a09cc2c39e8b331b70eaf87343cd3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EolXpH-CAInHhErA9jj8uiKrio1IlOMDZchx76yWOFzup1P56vJtSWg744tHMO8-M_SL0kuC3BIN8VxhhXLSY0hYoZqK9fYKOa0BaIig8fRAfodNStrgeUEQy9hwdQacwpyCO0YezGNMUTONTbnapzO2VM2OYNk3y-1w0MQxhCktse1Pc0HxzOV2Xn2F2jQ9jLC_QM2_G4k7v7hP049PH7-df2suvny_Ozy5b2zE8t8p3vTRdB1xRO_ReYU98L61SXJG65UAsNlhZSy0oJ3sA0gvsjJcCGNgBTtDFyh2S2epdDtHkG51M0IdEyhtt8hzs6LTxnTRGyo5izrjyvQcpJUggUlCheGW9X1m7pY9usG6asxkfQR9XpnClN-laKwBJJVTAmztATr8WV2YdQ7FuHM3k0lI05YrLTgmmqvT1P9JtWvJUv-qgAqYk7Deiq8rmVEp2_n4ZgvXeb736ravf-uC3vq1Nrx4-477lj7tVAKug1NK0cfnv7P9gfwOdDrV4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696349836</pqid></control><display><type>article</type><title>Ammonia for post-healing of formamidinium-based Perovskite films</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Li, Zhipeng ; Wang, Xiao ; Wang, Zaiwei ; Shao, Zhipeng ; Hao, Lianzheng ; Rao, Yi ; Chen, Chen ; Liu, Dachang ; Zhao, Qiangqiang ; Sun, Xiuhong ; Gao, Caiyun ; Zhang, Bingqian ; Wang, Xianzhao ; Wang, Li ; Cui, Guanglei ; Pang, Shuping</creator><creatorcontrib>Li, Zhipeng ; Wang, Xiao ; Wang, Zaiwei ; Shao, Zhipeng ; Hao, Lianzheng ; Rao, Yi ; Chen, Chen ; Liu, Dachang ; Zhao, Qiangqiang ; Sun, Xiuhong ; Gao, Caiyun ; Zhang, Bingqian ; Wang, Xianzhao ; Wang, Li ; Cui, Guanglei ; Pang, Shuping</creatorcontrib><description>Solvents employed for perovskite film fabrication not only play important roles in dissolving the precursors but also participate in crystallization process. High boiling point aprotic solvents with O-donor ligands have been extensively studied, but the formation of a highly uniform halide perovskite film still requires the participation of additives or an additional step to accelerate the nucleation rate. The volatile aliphatic methylamine with both coordinating ligands and hydrogen protons as solvent or post-healing gas facilitates the process of methylamine-based perovskite films with high crystallinity, few defects, and easy large-scale fabrication as well. However, the attempt in formamidinium-containing perovskites is challenged heretofore. Here, we reveal that the degradation of formamidinium-containing perovskites in aliphatic amines environment results from the transimination reaction of formamidinium cation and aliphatic amines along with the formation of ammonia. Based on this mechanism, ammonia is selected as a post-healing gas for a highly uniform, compact formamidinium-based perovskite films. In particular, low temperature is proved to be crucial to enable formamidinium-based perovskite materials to absorb enough ammonia molecules and form a liquid intermediate state which is the key to eliminating voids in raw films. As a result, the champion perovskite solar cell based on ammonia post-healing achieves a power conversion efficiency of 23.21% with excellent reproducibility. Especially the module power conversion efficiency with 14 cm 2 active area is over 20%. This ammonia post-healing treatment potentially makes it easier to upscale fabrication of highly efficient formamidinium-based devices. Solvents used for perovskite film fabrication not only dissolve the precursors but also play a role in the crystallization process. Here, authors study the role of transamination reactions in the underlying degradation mechanism of formamidinium-containing perovskites in aliphatic amines environment.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-32047-z</identifier><identifier>PMID: 35906237</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/131 ; 147/135 ; 147/3 ; 639/301/299/946 ; 639/4077/909/4101/4096/946 ; 639/638/911 ; Additives ; Aliphatic amines ; Amines ; Ammonia ; Boiling points ; Crystal defects ; Crystallization ; Degradation ; Energy conversion efficiency ; Fabrication ; Healing ; Humanities and Social Sciences ; Ligands ; Low temperature ; Methylamine ; multidisciplinary ; Nucleation ; Perovskites ; Photovoltaic cells ; Precursors ; Protons ; Science ; Science (multidisciplinary) ; Solar cells ; Solvents</subject><ispartof>Nature communications, 2022-07, Vol.13 (1), p.4417-10, Article 4417</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-9f5b8a553692cdbf90f1fb8c99691172d1c0a09cc2c39e8b331b70eaf87343cd3</citedby><cites>FETCH-LOGICAL-c540t-9f5b8a553692cdbf90f1fb8c99691172d1c0a09cc2c39e8b331b70eaf87343cd3</cites><orcidid>0000-0001-5987-7569 ; 0000-0002-2526-4104 ; 0000-0002-1915-7636 ; 0000-0003-4035-1609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2696349836/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2696349836?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35906237$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Zhipeng</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Wang, Zaiwei</creatorcontrib><creatorcontrib>Shao, Zhipeng</creatorcontrib><creatorcontrib>Hao, Lianzheng</creatorcontrib><creatorcontrib>Rao, Yi</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Liu, Dachang</creatorcontrib><creatorcontrib>Zhao, Qiangqiang</creatorcontrib><creatorcontrib>Sun, Xiuhong</creatorcontrib><creatorcontrib>Gao, Caiyun</creatorcontrib><creatorcontrib>Zhang, Bingqian</creatorcontrib><creatorcontrib>Wang, Xianzhao</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Cui, Guanglei</creatorcontrib><creatorcontrib>Pang, Shuping</creatorcontrib><title>Ammonia for post-healing of formamidinium-based Perovskite films</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Solvents employed for perovskite film fabrication not only play important roles in dissolving the precursors but also participate in crystallization process. High boiling point aprotic solvents with O-donor ligands have been extensively studied, but the formation of a highly uniform halide perovskite film still requires the participation of additives or an additional step to accelerate the nucleation rate. The volatile aliphatic methylamine with both coordinating ligands and hydrogen protons as solvent or post-healing gas facilitates the process of methylamine-based perovskite films with high crystallinity, few defects, and easy large-scale fabrication as well. However, the attempt in formamidinium-containing perovskites is challenged heretofore. Here, we reveal that the degradation of formamidinium-containing perovskites in aliphatic amines environment results from the transimination reaction of formamidinium cation and aliphatic amines along with the formation of ammonia. Based on this mechanism, ammonia is selected as a post-healing gas for a highly uniform, compact formamidinium-based perovskite films. In particular, low temperature is proved to be crucial to enable formamidinium-based perovskite materials to absorb enough ammonia molecules and form a liquid intermediate state which is the key to eliminating voids in raw films. As a result, the champion perovskite solar cell based on ammonia post-healing achieves a power conversion efficiency of 23.21% with excellent reproducibility. Especially the module power conversion efficiency with 14 cm 2 active area is over 20%. This ammonia post-healing treatment potentially makes it easier to upscale fabrication of highly efficient formamidinium-based devices. Solvents used for perovskite film fabrication not only dissolve the precursors but also play a role in the crystallization process. Here, authors study the role of transamination reactions in the underlying degradation mechanism of formamidinium-containing perovskites in aliphatic amines environment.</description><subject>140/131</subject><subject>147/135</subject><subject>147/3</subject><subject>639/301/299/946</subject><subject>639/4077/909/4101/4096/946</subject><subject>639/638/911</subject><subject>Additives</subject><subject>Aliphatic amines</subject><subject>Amines</subject><subject>Ammonia</subject><subject>Boiling points</subject><subject>Crystal defects</subject><subject>Crystallization</subject><subject>Degradation</subject><subject>Energy conversion efficiency</subject><subject>Fabrication</subject><subject>Healing</subject><subject>Humanities and Social Sciences</subject><subject>Ligands</subject><subject>Low temperature</subject><subject>Methylamine</subject><subject>multidisciplinary</subject><subject>Nucleation</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Precursors</subject><subject>Protons</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Solar cells</subject><subject>Solvents</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhi0EolXpH-CAInHhErA9jj8uiKrio1IlOMDZchx76yWOFzup1P56vJtSWg744tHMO8-M_SL0kuC3BIN8VxhhXLSY0hYoZqK9fYKOa0BaIig8fRAfodNStrgeUEQy9hwdQacwpyCO0YezGNMUTONTbnapzO2VM2OYNk3y-1w0MQxhCktse1Pc0HxzOV2Xn2F2jQ9jLC_QM2_G4k7v7hP049PH7-df2suvny_Ozy5b2zE8t8p3vTRdB1xRO_ReYU98L61SXJG65UAsNlhZSy0oJ3sA0gvsjJcCGNgBTtDFyh2S2epdDtHkG51M0IdEyhtt8hzs6LTxnTRGyo5izrjyvQcpJUggUlCheGW9X1m7pY9usG6asxkfQR9XpnClN-laKwBJJVTAmztATr8WV2YdQ7FuHM3k0lI05YrLTgmmqvT1P9JtWvJUv-qgAqYk7Deiq8rmVEp2_n4ZgvXeb736ravf-uC3vq1Nrx4-477lj7tVAKug1NK0cfnv7P9gfwOdDrV4</recordid><startdate>20220729</startdate><enddate>20220729</enddate><creator>Li, Zhipeng</creator><creator>Wang, Xiao</creator><creator>Wang, Zaiwei</creator><creator>Shao, Zhipeng</creator><creator>Hao, Lianzheng</creator><creator>Rao, Yi</creator><creator>Chen, Chen</creator><creator>Liu, Dachang</creator><creator>Zhao, Qiangqiang</creator><creator>Sun, Xiuhong</creator><creator>Gao, Caiyun</creator><creator>Zhang, Bingqian</creator><creator>Wang, Xianzhao</creator><creator>Wang, Li</creator><creator>Cui, Guanglei</creator><creator>Pang, Shuping</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5987-7569</orcidid><orcidid>https://orcid.org/0000-0002-2526-4104</orcidid><orcidid>https://orcid.org/0000-0002-1915-7636</orcidid><orcidid>https://orcid.org/0000-0003-4035-1609</orcidid></search><sort><creationdate>20220729</creationdate><title>Ammonia for post-healing of formamidinium-based Perovskite films</title><author>Li, Zhipeng ; Wang, Xiao ; Wang, Zaiwei ; Shao, Zhipeng ; Hao, Lianzheng ; Rao, Yi ; Chen, Chen ; Liu, Dachang ; Zhao, Qiangqiang ; Sun, Xiuhong ; Gao, Caiyun ; Zhang, Bingqian ; Wang, Xianzhao ; Wang, Li ; Cui, Guanglei ; Pang, Shuping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-9f5b8a553692cdbf90f1fb8c99691172d1c0a09cc2c39e8b331b70eaf87343cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>140/131</topic><topic>147/135</topic><topic>147/3</topic><topic>639/301/299/946</topic><topic>639/4077/909/4101/4096/946</topic><topic>639/638/911</topic><topic>Additives</topic><topic>Aliphatic amines</topic><topic>Amines</topic><topic>Ammonia</topic><topic>Boiling points</topic><topic>Crystal defects</topic><topic>Crystallization</topic><topic>Degradation</topic><topic>Energy conversion efficiency</topic><topic>Fabrication</topic><topic>Healing</topic><topic>Humanities and Social Sciences</topic><topic>Ligands</topic><topic>Low temperature</topic><topic>Methylamine</topic><topic>multidisciplinary</topic><topic>Nucleation</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Precursors</topic><topic>Protons</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Solar cells</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhipeng</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Wang, Zaiwei</creatorcontrib><creatorcontrib>Shao, Zhipeng</creatorcontrib><creatorcontrib>Hao, Lianzheng</creatorcontrib><creatorcontrib>Rao, Yi</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Liu, Dachang</creatorcontrib><creatorcontrib>Zhao, Qiangqiang</creatorcontrib><creatorcontrib>Sun, Xiuhong</creatorcontrib><creatorcontrib>Gao, Caiyun</creatorcontrib><creatorcontrib>Zhang, Bingqian</creatorcontrib><creatorcontrib>Wang, Xianzhao</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Cui, Guanglei</creatorcontrib><creatorcontrib>Pang, Shuping</creatorcontrib><collection>Springer Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhipeng</au><au>Wang, Xiao</au><au>Wang, Zaiwei</au><au>Shao, Zhipeng</au><au>Hao, Lianzheng</au><au>Rao, Yi</au><au>Chen, Chen</au><au>Liu, Dachang</au><au>Zhao, Qiangqiang</au><au>Sun, Xiuhong</au><au>Gao, Caiyun</au><au>Zhang, Bingqian</au><au>Wang, Xianzhao</au><au>Wang, Li</au><au>Cui, Guanglei</au><au>Pang, Shuping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ammonia for post-healing of formamidinium-based Perovskite films</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2022-07-29</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>4417</spage><epage>10</epage><pages>4417-10</pages><artnum>4417</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Solvents employed for perovskite film fabrication not only play important roles in dissolving the precursors but also participate in crystallization process. High boiling point aprotic solvents with O-donor ligands have been extensively studied, but the formation of a highly uniform halide perovskite film still requires the participation of additives or an additional step to accelerate the nucleation rate. The volatile aliphatic methylamine with both coordinating ligands and hydrogen protons as solvent or post-healing gas facilitates the process of methylamine-based perovskite films with high crystallinity, few defects, and easy large-scale fabrication as well. However, the attempt in formamidinium-containing perovskites is challenged heretofore. Here, we reveal that the degradation of formamidinium-containing perovskites in aliphatic amines environment results from the transimination reaction of formamidinium cation and aliphatic amines along with the formation of ammonia. Based on this mechanism, ammonia is selected as a post-healing gas for a highly uniform, compact formamidinium-based perovskite films. In particular, low temperature is proved to be crucial to enable formamidinium-based perovskite materials to absorb enough ammonia molecules and form a liquid intermediate state which is the key to eliminating voids in raw films. As a result, the champion perovskite solar cell based on ammonia post-healing achieves a power conversion efficiency of 23.21% with excellent reproducibility. Especially the module power conversion efficiency with 14 cm 2 active area is over 20%. This ammonia post-healing treatment potentially makes it easier to upscale fabrication of highly efficient formamidinium-based devices. Solvents used for perovskite film fabrication not only dissolve the precursors but also play a role in the crystallization process. Here, authors study the role of transamination reactions in the underlying degradation mechanism of formamidinium-containing perovskites in aliphatic amines environment.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35906237</pmid><doi>10.1038/s41467-022-32047-z</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5987-7569</orcidid><orcidid>https://orcid.org/0000-0002-2526-4104</orcidid><orcidid>https://orcid.org/0000-0002-1915-7636</orcidid><orcidid>https://orcid.org/0000-0003-4035-1609</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2022-07, Vol.13 (1), p.4417-10, Article 4417
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_af58aa885206469fbf38883831872796
source Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 140/131
147/135
147/3
639/301/299/946
639/4077/909/4101/4096/946
639/638/911
Additives
Aliphatic amines
Amines
Ammonia
Boiling points
Crystal defects
Crystallization
Degradation
Energy conversion efficiency
Fabrication
Healing
Humanities and Social Sciences
Ligands
Low temperature
Methylamine
multidisciplinary
Nucleation
Perovskites
Photovoltaic cells
Precursors
Protons
Science
Science (multidisciplinary)
Solar cells
Solvents
title Ammonia for post-healing of formamidinium-based Perovskite films
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A50%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ammonia%20for%20post-healing%20of%20formamidinium-based%20Perovskite%20films&rft.jtitle=Nature%20communications&rft.au=Li,%20Zhipeng&rft.date=2022-07-29&rft.volume=13&rft.issue=1&rft.spage=4417&rft.epage=10&rft.pages=4417-10&rft.artnum=4417&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-32047-z&rft_dat=%3Cproquest_doaj_%3E2696859749%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-9f5b8a553692cdbf90f1fb8c99691172d1c0a09cc2c39e8b331b70eaf87343cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2696349836&rft_id=info:pmid/35906237&rfr_iscdi=true