Loading…
Ammonia for post-healing of formamidinium-based Perovskite films
Solvents employed for perovskite film fabrication not only play important roles in dissolving the precursors but also participate in crystallization process. High boiling point aprotic solvents with O-donor ligands have been extensively studied, but the formation of a highly uniform halide perovskit...
Saved in:
Published in: | Nature communications 2022-07, Vol.13 (1), p.4417-10, Article 4417 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-9f5b8a553692cdbf90f1fb8c99691172d1c0a09cc2c39e8b331b70eaf87343cd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-9f5b8a553692cdbf90f1fb8c99691172d1c0a09cc2c39e8b331b70eaf87343cd3 |
container_end_page | 10 |
container_issue | 1 |
container_start_page | 4417 |
container_title | Nature communications |
container_volume | 13 |
creator | Li, Zhipeng Wang, Xiao Wang, Zaiwei Shao, Zhipeng Hao, Lianzheng Rao, Yi Chen, Chen Liu, Dachang Zhao, Qiangqiang Sun, Xiuhong Gao, Caiyun Zhang, Bingqian Wang, Xianzhao Wang, Li Cui, Guanglei Pang, Shuping |
description | Solvents employed for perovskite film fabrication not only play important roles in dissolving the precursors but also participate in crystallization process. High boiling point aprotic solvents with O-donor ligands have been extensively studied, but the formation of a highly uniform halide perovskite film still requires the participation of additives or an additional step to accelerate the nucleation rate. The volatile aliphatic methylamine with both coordinating ligands and hydrogen protons as solvent or post-healing gas facilitates the process of methylamine-based perovskite films with high crystallinity, few defects, and easy large-scale fabrication as well. However, the attempt in formamidinium-containing perovskites is challenged heretofore. Here, we reveal that the degradation of formamidinium-containing perovskites in aliphatic amines environment results from the transimination reaction of formamidinium cation and aliphatic amines along with the formation of ammonia. Based on this mechanism, ammonia is selected as a post-healing gas for a highly uniform, compact formamidinium-based perovskite films. In particular, low temperature is proved to be crucial to enable formamidinium-based perovskite materials to absorb enough ammonia molecules and form a liquid intermediate state which is the key to eliminating voids in raw films. As a result, the champion perovskite solar cell based on ammonia post-healing achieves a power conversion efficiency of 23.21% with excellent reproducibility. Especially the module power conversion efficiency with 14 cm
2
active area is over 20%. This ammonia post-healing treatment potentially makes it easier to upscale fabrication of highly efficient formamidinium-based devices.
Solvents used for perovskite film fabrication not only dissolve the precursors but also play a role in the crystallization process. Here, authors study the role of transamination reactions in the underlying degradation mechanism of formamidinium-containing perovskites in aliphatic amines environment. |
doi_str_mv | 10.1038/s41467-022-32047-z |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_af58aa885206469fbf38883831872796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_af58aa885206469fbf38883831872796</doaj_id><sourcerecordid>2696859749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-9f5b8a553692cdbf90f1fb8c99691172d1c0a09cc2c39e8b331b70eaf87343cd3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EolXpH-CAInHhErA9jj8uiKrio1IlOMDZchx76yWOFzup1P56vJtSWg744tHMO8-M_SL0kuC3BIN8VxhhXLSY0hYoZqK9fYKOa0BaIig8fRAfodNStrgeUEQy9hwdQacwpyCO0YezGNMUTONTbnapzO2VM2OYNk3y-1w0MQxhCktse1Pc0HxzOV2Xn2F2jQ9jLC_QM2_G4k7v7hP049PH7-df2suvny_Ozy5b2zE8t8p3vTRdB1xRO_ReYU98L61SXJG65UAsNlhZSy0oJ3sA0gvsjJcCGNgBTtDFyh2S2epdDtHkG51M0IdEyhtt8hzs6LTxnTRGyo5izrjyvQcpJUggUlCheGW9X1m7pY9usG6asxkfQR9XpnClN-laKwBJJVTAmztATr8WV2YdQ7FuHM3k0lI05YrLTgmmqvT1P9JtWvJUv-qgAqYk7Deiq8rmVEp2_n4ZgvXeb736ravf-uC3vq1Nrx4-477lj7tVAKug1NK0cfnv7P9gfwOdDrV4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696349836</pqid></control><display><type>article</type><title>Ammonia for post-healing of formamidinium-based Perovskite films</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Li, Zhipeng ; Wang, Xiao ; Wang, Zaiwei ; Shao, Zhipeng ; Hao, Lianzheng ; Rao, Yi ; Chen, Chen ; Liu, Dachang ; Zhao, Qiangqiang ; Sun, Xiuhong ; Gao, Caiyun ; Zhang, Bingqian ; Wang, Xianzhao ; Wang, Li ; Cui, Guanglei ; Pang, Shuping</creator><creatorcontrib>Li, Zhipeng ; Wang, Xiao ; Wang, Zaiwei ; Shao, Zhipeng ; Hao, Lianzheng ; Rao, Yi ; Chen, Chen ; Liu, Dachang ; Zhao, Qiangqiang ; Sun, Xiuhong ; Gao, Caiyun ; Zhang, Bingqian ; Wang, Xianzhao ; Wang, Li ; Cui, Guanglei ; Pang, Shuping</creatorcontrib><description>Solvents employed for perovskite film fabrication not only play important roles in dissolving the precursors but also participate in crystallization process. High boiling point aprotic solvents with O-donor ligands have been extensively studied, but the formation of a highly uniform halide perovskite film still requires the participation of additives or an additional step to accelerate the nucleation rate. The volatile aliphatic methylamine with both coordinating ligands and hydrogen protons as solvent or post-healing gas facilitates the process of methylamine-based perovskite films with high crystallinity, few defects, and easy large-scale fabrication as well. However, the attempt in formamidinium-containing perovskites is challenged heretofore. Here, we reveal that the degradation of formamidinium-containing perovskites in aliphatic amines environment results from the transimination reaction of formamidinium cation and aliphatic amines along with the formation of ammonia. Based on this mechanism, ammonia is selected as a post-healing gas for a highly uniform, compact formamidinium-based perovskite films. In particular, low temperature is proved to be crucial to enable formamidinium-based perovskite materials to absorb enough ammonia molecules and form a liquid intermediate state which is the key to eliminating voids in raw films. As a result, the champion perovskite solar cell based on ammonia post-healing achieves a power conversion efficiency of 23.21% with excellent reproducibility. Especially the module power conversion efficiency with 14 cm
2
active area is over 20%. This ammonia post-healing treatment potentially makes it easier to upscale fabrication of highly efficient formamidinium-based devices.
Solvents used for perovskite film fabrication not only dissolve the precursors but also play a role in the crystallization process. Here, authors study the role of transamination reactions in the underlying degradation mechanism of formamidinium-containing perovskites in aliphatic amines environment.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-32047-z</identifier><identifier>PMID: 35906237</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/131 ; 147/135 ; 147/3 ; 639/301/299/946 ; 639/4077/909/4101/4096/946 ; 639/638/911 ; Additives ; Aliphatic amines ; Amines ; Ammonia ; Boiling points ; Crystal defects ; Crystallization ; Degradation ; Energy conversion efficiency ; Fabrication ; Healing ; Humanities and Social Sciences ; Ligands ; Low temperature ; Methylamine ; multidisciplinary ; Nucleation ; Perovskites ; Photovoltaic cells ; Precursors ; Protons ; Science ; Science (multidisciplinary) ; Solar cells ; Solvents</subject><ispartof>Nature communications, 2022-07, Vol.13 (1), p.4417-10, Article 4417</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-9f5b8a553692cdbf90f1fb8c99691172d1c0a09cc2c39e8b331b70eaf87343cd3</citedby><cites>FETCH-LOGICAL-c540t-9f5b8a553692cdbf90f1fb8c99691172d1c0a09cc2c39e8b331b70eaf87343cd3</cites><orcidid>0000-0001-5987-7569 ; 0000-0002-2526-4104 ; 0000-0002-1915-7636 ; 0000-0003-4035-1609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2696349836/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2696349836?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35906237$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Zhipeng</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Wang, Zaiwei</creatorcontrib><creatorcontrib>Shao, Zhipeng</creatorcontrib><creatorcontrib>Hao, Lianzheng</creatorcontrib><creatorcontrib>Rao, Yi</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Liu, Dachang</creatorcontrib><creatorcontrib>Zhao, Qiangqiang</creatorcontrib><creatorcontrib>Sun, Xiuhong</creatorcontrib><creatorcontrib>Gao, Caiyun</creatorcontrib><creatorcontrib>Zhang, Bingqian</creatorcontrib><creatorcontrib>Wang, Xianzhao</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Cui, Guanglei</creatorcontrib><creatorcontrib>Pang, Shuping</creatorcontrib><title>Ammonia for post-healing of formamidinium-based Perovskite films</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Solvents employed for perovskite film fabrication not only play important roles in dissolving the precursors but also participate in crystallization process. High boiling point aprotic solvents with O-donor ligands have been extensively studied, but the formation of a highly uniform halide perovskite film still requires the participation of additives or an additional step to accelerate the nucleation rate. The volatile aliphatic methylamine with both coordinating ligands and hydrogen protons as solvent or post-healing gas facilitates the process of methylamine-based perovskite films with high crystallinity, few defects, and easy large-scale fabrication as well. However, the attempt in formamidinium-containing perovskites is challenged heretofore. Here, we reveal that the degradation of formamidinium-containing perovskites in aliphatic amines environment results from the transimination reaction of formamidinium cation and aliphatic amines along with the formation of ammonia. Based on this mechanism, ammonia is selected as a post-healing gas for a highly uniform, compact formamidinium-based perovskite films. In particular, low temperature is proved to be crucial to enable formamidinium-based perovskite materials to absorb enough ammonia molecules and form a liquid intermediate state which is the key to eliminating voids in raw films. As a result, the champion perovskite solar cell based on ammonia post-healing achieves a power conversion efficiency of 23.21% with excellent reproducibility. Especially the module power conversion efficiency with 14 cm
2
active area is over 20%. This ammonia post-healing treatment potentially makes it easier to upscale fabrication of highly efficient formamidinium-based devices.
Solvents used for perovskite film fabrication not only dissolve the precursors but also play a role in the crystallization process. Here, authors study the role of transamination reactions in the underlying degradation mechanism of formamidinium-containing perovskites in aliphatic amines environment.</description><subject>140/131</subject><subject>147/135</subject><subject>147/3</subject><subject>639/301/299/946</subject><subject>639/4077/909/4101/4096/946</subject><subject>639/638/911</subject><subject>Additives</subject><subject>Aliphatic amines</subject><subject>Amines</subject><subject>Ammonia</subject><subject>Boiling points</subject><subject>Crystal defects</subject><subject>Crystallization</subject><subject>Degradation</subject><subject>Energy conversion efficiency</subject><subject>Fabrication</subject><subject>Healing</subject><subject>Humanities and Social Sciences</subject><subject>Ligands</subject><subject>Low temperature</subject><subject>Methylamine</subject><subject>multidisciplinary</subject><subject>Nucleation</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Precursors</subject><subject>Protons</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Solar cells</subject><subject>Solvents</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhi0EolXpH-CAInHhErA9jj8uiKrio1IlOMDZchx76yWOFzup1P56vJtSWg744tHMO8-M_SL0kuC3BIN8VxhhXLSY0hYoZqK9fYKOa0BaIig8fRAfodNStrgeUEQy9hwdQacwpyCO0YezGNMUTONTbnapzO2VM2OYNk3y-1w0MQxhCktse1Pc0HxzOV2Xn2F2jQ9jLC_QM2_G4k7v7hP049PH7-df2suvny_Ozy5b2zE8t8p3vTRdB1xRO_ReYU98L61SXJG65UAsNlhZSy0oJ3sA0gvsjJcCGNgBTtDFyh2S2epdDtHkG51M0IdEyhtt8hzs6LTxnTRGyo5izrjyvQcpJUggUlCheGW9X1m7pY9usG6asxkfQR9XpnClN-laKwBJJVTAmztATr8WV2YdQ7FuHM3k0lI05YrLTgmmqvT1P9JtWvJUv-qgAqYk7Deiq8rmVEp2_n4ZgvXeb736ravf-uC3vq1Nrx4-477lj7tVAKug1NK0cfnv7P9gfwOdDrV4</recordid><startdate>20220729</startdate><enddate>20220729</enddate><creator>Li, Zhipeng</creator><creator>Wang, Xiao</creator><creator>Wang, Zaiwei</creator><creator>Shao, Zhipeng</creator><creator>Hao, Lianzheng</creator><creator>Rao, Yi</creator><creator>Chen, Chen</creator><creator>Liu, Dachang</creator><creator>Zhao, Qiangqiang</creator><creator>Sun, Xiuhong</creator><creator>Gao, Caiyun</creator><creator>Zhang, Bingqian</creator><creator>Wang, Xianzhao</creator><creator>Wang, Li</creator><creator>Cui, Guanglei</creator><creator>Pang, Shuping</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5987-7569</orcidid><orcidid>https://orcid.org/0000-0002-2526-4104</orcidid><orcidid>https://orcid.org/0000-0002-1915-7636</orcidid><orcidid>https://orcid.org/0000-0003-4035-1609</orcidid></search><sort><creationdate>20220729</creationdate><title>Ammonia for post-healing of formamidinium-based Perovskite films</title><author>Li, Zhipeng ; Wang, Xiao ; Wang, Zaiwei ; Shao, Zhipeng ; Hao, Lianzheng ; Rao, Yi ; Chen, Chen ; Liu, Dachang ; Zhao, Qiangqiang ; Sun, Xiuhong ; Gao, Caiyun ; Zhang, Bingqian ; Wang, Xianzhao ; Wang, Li ; Cui, Guanglei ; Pang, Shuping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-9f5b8a553692cdbf90f1fb8c99691172d1c0a09cc2c39e8b331b70eaf87343cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>140/131</topic><topic>147/135</topic><topic>147/3</topic><topic>639/301/299/946</topic><topic>639/4077/909/4101/4096/946</topic><topic>639/638/911</topic><topic>Additives</topic><topic>Aliphatic amines</topic><topic>Amines</topic><topic>Ammonia</topic><topic>Boiling points</topic><topic>Crystal defects</topic><topic>Crystallization</topic><topic>Degradation</topic><topic>Energy conversion efficiency</topic><topic>Fabrication</topic><topic>Healing</topic><topic>Humanities and Social Sciences</topic><topic>Ligands</topic><topic>Low temperature</topic><topic>Methylamine</topic><topic>multidisciplinary</topic><topic>Nucleation</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Precursors</topic><topic>Protons</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Solar cells</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhipeng</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Wang, Zaiwei</creatorcontrib><creatorcontrib>Shao, Zhipeng</creatorcontrib><creatorcontrib>Hao, Lianzheng</creatorcontrib><creatorcontrib>Rao, Yi</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Liu, Dachang</creatorcontrib><creatorcontrib>Zhao, Qiangqiang</creatorcontrib><creatorcontrib>Sun, Xiuhong</creatorcontrib><creatorcontrib>Gao, Caiyun</creatorcontrib><creatorcontrib>Zhang, Bingqian</creatorcontrib><creatorcontrib>Wang, Xianzhao</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Cui, Guanglei</creatorcontrib><creatorcontrib>Pang, Shuping</creatorcontrib><collection>Springer Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhipeng</au><au>Wang, Xiao</au><au>Wang, Zaiwei</au><au>Shao, Zhipeng</au><au>Hao, Lianzheng</au><au>Rao, Yi</au><au>Chen, Chen</au><au>Liu, Dachang</au><au>Zhao, Qiangqiang</au><au>Sun, Xiuhong</au><au>Gao, Caiyun</au><au>Zhang, Bingqian</au><au>Wang, Xianzhao</au><au>Wang, Li</au><au>Cui, Guanglei</au><au>Pang, Shuping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ammonia for post-healing of formamidinium-based Perovskite films</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2022-07-29</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>4417</spage><epage>10</epage><pages>4417-10</pages><artnum>4417</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Solvents employed for perovskite film fabrication not only play important roles in dissolving the precursors but also participate in crystallization process. High boiling point aprotic solvents with O-donor ligands have been extensively studied, but the formation of a highly uniform halide perovskite film still requires the participation of additives or an additional step to accelerate the nucleation rate. The volatile aliphatic methylamine with both coordinating ligands and hydrogen protons as solvent or post-healing gas facilitates the process of methylamine-based perovskite films with high crystallinity, few defects, and easy large-scale fabrication as well. However, the attempt in formamidinium-containing perovskites is challenged heretofore. Here, we reveal that the degradation of formamidinium-containing perovskites in aliphatic amines environment results from the transimination reaction of formamidinium cation and aliphatic amines along with the formation of ammonia. Based on this mechanism, ammonia is selected as a post-healing gas for a highly uniform, compact formamidinium-based perovskite films. In particular, low temperature is proved to be crucial to enable formamidinium-based perovskite materials to absorb enough ammonia molecules and form a liquid intermediate state which is the key to eliminating voids in raw films. As a result, the champion perovskite solar cell based on ammonia post-healing achieves a power conversion efficiency of 23.21% with excellent reproducibility. Especially the module power conversion efficiency with 14 cm
2
active area is over 20%. This ammonia post-healing treatment potentially makes it easier to upscale fabrication of highly efficient formamidinium-based devices.
Solvents used for perovskite film fabrication not only dissolve the precursors but also play a role in the crystallization process. Here, authors study the role of transamination reactions in the underlying degradation mechanism of formamidinium-containing perovskites in aliphatic amines environment.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35906237</pmid><doi>10.1038/s41467-022-32047-z</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5987-7569</orcidid><orcidid>https://orcid.org/0000-0002-2526-4104</orcidid><orcidid>https://orcid.org/0000-0002-1915-7636</orcidid><orcidid>https://orcid.org/0000-0003-4035-1609</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2022-07, Vol.13 (1), p.4417-10, Article 4417 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_af58aa885206469fbf38883831872796 |
source | Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 140/131 147/135 147/3 639/301/299/946 639/4077/909/4101/4096/946 639/638/911 Additives Aliphatic amines Amines Ammonia Boiling points Crystal defects Crystallization Degradation Energy conversion efficiency Fabrication Healing Humanities and Social Sciences Ligands Low temperature Methylamine multidisciplinary Nucleation Perovskites Photovoltaic cells Precursors Protons Science Science (multidisciplinary) Solar cells Solvents |
title | Ammonia for post-healing of formamidinium-based Perovskite films |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A50%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ammonia%20for%20post-healing%20of%20formamidinium-based%20Perovskite%20films&rft.jtitle=Nature%20communications&rft.au=Li,%20Zhipeng&rft.date=2022-07-29&rft.volume=13&rft.issue=1&rft.spage=4417&rft.epage=10&rft.pages=4417-10&rft.artnum=4417&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-32047-z&rft_dat=%3Cproquest_doaj_%3E2696859749%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-9f5b8a553692cdbf90f1fb8c99691172d1c0a09cc2c39e8b331b70eaf87343cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2696349836&rft_id=info:pmid/35906237&rfr_iscdi=true |