Loading…

CVW-Etr: A High-Precision Method for Estimating the Severity Level of Cotton Verticillium Wilt Disease

Cotton verticillium wilt significantly impacts both cotton quality and yield. Selecting disease-resistant varieties and using their resistance genes in breeding is an effective and economical control measure. Accurate severity estimation of this disease is crucial for breeding resistant cotton varie...

Full description

Saved in:
Bibliographic Details
Published in:Plants (Basel) 2024-11, Vol.13 (21), p.2960
Main Authors: Pan, Pan, Yao, Qiong, Shen, Jiawei, Hu, Lin, Zhao, Sijian, Huang, Longyu, Yu, Guoping, Zhou, Guomin, Zhang, Jianhua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c471t-b0b44bc3d1d50ac4ffe0474425c83a8b4afe66db38a6d757cd8a57e5837021d13
container_end_page
container_issue 21
container_start_page 2960
container_title Plants (Basel)
container_volume 13
creator Pan, Pan
Yao, Qiong
Shen, Jiawei
Hu, Lin
Zhao, Sijian
Huang, Longyu
Yu, Guoping
Zhou, Guomin
Zhang, Jianhua
description Cotton verticillium wilt significantly impacts both cotton quality and yield. Selecting disease-resistant varieties and using their resistance genes in breeding is an effective and economical control measure. Accurate severity estimation of this disease is crucial for breeding resistant cotton varieties. However, current methods fall short, slowing the breeding process. To address these challenges, this paper introduces CVW-Etr, a high-precision method for estimating the severity of cotton verticillium wilt. CVW-Etr classifies severity into six levels (L0 to L5) based on the proportion of segmented diseased leaves to lesions. Upon integrating YOLOv8-Seg with MobileSAM, CVW-Etr demonstrates excellent performance and efficiency with limited samples in complex field conditions. It incorporates the RFCBAMConv, C2f-RFCBAMConv, AWDownSample-Lite, and GSegment modules to handle blurry transitions between healthy and diseased regions and variations in angle and distance during image collection, and to optimize the model's parameter size and computational complexity. Our experimental results show that CVW-Etr effectively segments diseased leaves and lesions, achieving a mean average precision (mAP) of 92.90% and an average severity estimation accuracy of 92.92% with only 2.6M parameters and 10.1G FLOPS. Through experiments, CVW-Etr proves robust in estimating cotton verticillium wilt severity, offering valuable insights for disease-resistant cotton breeding applications.
doi_str_mv 10.3390/plants13212960
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_af660bda4a61440591a5097992f42fef</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A815420967</galeid><doaj_id>oai_doaj_org_article_af660bda4a61440591a5097992f42fef</doaj_id><sourcerecordid>A815420967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-b0b44bc3d1d50ac4ffe0474425c83a8b4afe66db38a6d757cd8a57e5837021d13</originalsourceid><addsrcrecordid>eNptkt9vFCEQxzdGY5vaVx8NiS_6sJVfu7C-mMt52kvOaKy2j4Rlhz2aveUKbGP_ezlba88USJjAdz4zDFMULwk-YazB77aDHlMkjBLa1PhJcUgpZaUQXDx9YB8UxzFe4jxkXqR-XhywpiKNFM1hYefnF-Uihfdohk5dvy6_BTAuOj-iL5DWvkPWB7SIyW10cmOP0hrQGVxDcOkGrbIxIG_R3KeUXc4hJGfcMLhpgy7ckNBHF0FHeFE8s3qIcHy3HxU_Py1-zE_L1dfPy_lsVRouSCpb3HLeGtaRrsLacGsBc8E5rYxkWrZcW6jrrmVS152ohOmkrgRUkglMSUfYUbG85XZeX6ptyFmHG-W1U38OfOiV3qU4gNK2rnHbaa5rwjmuGqIr3IimoZZTCzazPtyytlO7gc7AmIIe9qD7N6Nbq95fK0IqLonEmfDmjhD81QQxqY2LBob8beCnqBihUvBKcpmlr_-TXvopjLlWO1WNGa8x_qfqdX6BG63Pgc0OqmYyR6W4qUVWnTyiyrODjTN-BOvy-Z7D2z2HrEnwK_V6ilEtz74_CjfBxxjA3heEYLXrSrXfldnh1cMy3sv_9iD7Dbwv210</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126034600</pqid></control><display><type>article</type><title>CVW-Etr: A High-Precision Method for Estimating the Severity Level of Cotton Verticillium Wilt Disease</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Pan, Pan ; Yao, Qiong ; Shen, Jiawei ; Hu, Lin ; Zhao, Sijian ; Huang, Longyu ; Yu, Guoping ; Zhou, Guomin ; Zhang, Jianhua</creator><creatorcontrib>Pan, Pan ; Yao, Qiong ; Shen, Jiawei ; Hu, Lin ; Zhao, Sijian ; Huang, Longyu ; Yu, Guoping ; Zhou, Guomin ; Zhang, Jianhua</creatorcontrib><description>Cotton verticillium wilt significantly impacts both cotton quality and yield. Selecting disease-resistant varieties and using their resistance genes in breeding is an effective and economical control measure. Accurate severity estimation of this disease is crucial for breeding resistant cotton varieties. However, current methods fall short, slowing the breeding process. To address these challenges, this paper introduces CVW-Etr, a high-precision method for estimating the severity of cotton verticillium wilt. CVW-Etr classifies severity into six levels (L0 to L5) based on the proportion of segmented diseased leaves to lesions. Upon integrating YOLOv8-Seg with MobileSAM, CVW-Etr demonstrates excellent performance and efficiency with limited samples in complex field conditions. It incorporates the RFCBAMConv, C2f-RFCBAMConv, AWDownSample-Lite, and GSegment modules to handle blurry transitions between healthy and diseased regions and variations in angle and distance during image collection, and to optimize the model's parameter size and computational complexity. Our experimental results show that CVW-Etr effectively segments diseased leaves and lesions, achieving a mean average precision (mAP) of 92.90% and an average severity estimation accuracy of 92.92% with only 2.6M parameters and 10.1G FLOPS. Through experiments, CVW-Etr proves robust in estimating cotton verticillium wilt severity, offering valuable insights for disease-resistant cotton breeding applications.</description><identifier>ISSN: 2223-7747</identifier><identifier>EISSN: 2223-7747</identifier><identifier>DOI: 10.3390/plants13212960</identifier><identifier>PMID: 39519879</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Automation ; China ; Complexity ; Cotton ; cotton verticillium wilt ; crop disease severity level estimation ; Crop diseases ; Crop yield ; Datasets ; Deep learning ; Disease control ; Disease prevention ; Disease resistance ; Diseases ; Estimation ; Fungicides ; Leaves ; Lesions ; Methods ; MobileSAM ; Parameters ; Pesticides ; Plant breeding ; Remote sensing ; Smartphones ; Staphylococcal enterotoxin G ; Textile fibers ; Unmanned aerial vehicles ; Verticillium wilt ; YOLOv8-Seg</subject><ispartof>Plants (Basel), 2024-11, Vol.13 (21), p.2960</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c471t-b0b44bc3d1d50ac4ffe0474425c83a8b4afe66db38a6d757cd8a57e5837021d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3126034600/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3126034600?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39519879$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Pan</creatorcontrib><creatorcontrib>Yao, Qiong</creatorcontrib><creatorcontrib>Shen, Jiawei</creatorcontrib><creatorcontrib>Hu, Lin</creatorcontrib><creatorcontrib>Zhao, Sijian</creatorcontrib><creatorcontrib>Huang, Longyu</creatorcontrib><creatorcontrib>Yu, Guoping</creatorcontrib><creatorcontrib>Zhou, Guomin</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><title>CVW-Etr: A High-Precision Method for Estimating the Severity Level of Cotton Verticillium Wilt Disease</title><title>Plants (Basel)</title><addtitle>Plants (Basel)</addtitle><description>Cotton verticillium wilt significantly impacts both cotton quality and yield. Selecting disease-resistant varieties and using their resistance genes in breeding is an effective and economical control measure. Accurate severity estimation of this disease is crucial for breeding resistant cotton varieties. However, current methods fall short, slowing the breeding process. To address these challenges, this paper introduces CVW-Etr, a high-precision method for estimating the severity of cotton verticillium wilt. CVW-Etr classifies severity into six levels (L0 to L5) based on the proportion of segmented diseased leaves to lesions. Upon integrating YOLOv8-Seg with MobileSAM, CVW-Etr demonstrates excellent performance and efficiency with limited samples in complex field conditions. It incorporates the RFCBAMConv, C2f-RFCBAMConv, AWDownSample-Lite, and GSegment modules to handle blurry transitions between healthy and diseased regions and variations in angle and distance during image collection, and to optimize the model's parameter size and computational complexity. Our experimental results show that CVW-Etr effectively segments diseased leaves and lesions, achieving a mean average precision (mAP) of 92.90% and an average severity estimation accuracy of 92.92% with only 2.6M parameters and 10.1G FLOPS. Through experiments, CVW-Etr proves robust in estimating cotton verticillium wilt severity, offering valuable insights for disease-resistant cotton breeding applications.</description><subject>Automation</subject><subject>China</subject><subject>Complexity</subject><subject>Cotton</subject><subject>cotton verticillium wilt</subject><subject>crop disease severity level estimation</subject><subject>Crop diseases</subject><subject>Crop yield</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Disease control</subject><subject>Disease prevention</subject><subject>Disease resistance</subject><subject>Diseases</subject><subject>Estimation</subject><subject>Fungicides</subject><subject>Leaves</subject><subject>Lesions</subject><subject>Methods</subject><subject>MobileSAM</subject><subject>Parameters</subject><subject>Pesticides</subject><subject>Plant breeding</subject><subject>Remote sensing</subject><subject>Smartphones</subject><subject>Staphylococcal enterotoxin G</subject><subject>Textile fibers</subject><subject>Unmanned aerial vehicles</subject><subject>Verticillium wilt</subject><subject>YOLOv8-Seg</subject><issn>2223-7747</issn><issn>2223-7747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkt9vFCEQxzdGY5vaVx8NiS_6sJVfu7C-mMt52kvOaKy2j4Rlhz2aveUKbGP_ezlba88USJjAdz4zDFMULwk-YazB77aDHlMkjBLa1PhJcUgpZaUQXDx9YB8UxzFe4jxkXqR-XhywpiKNFM1hYefnF-Uihfdohk5dvy6_BTAuOj-iL5DWvkPWB7SIyW10cmOP0hrQGVxDcOkGrbIxIG_R3KeUXc4hJGfcMLhpgy7ckNBHF0FHeFE8s3qIcHy3HxU_Py1-zE_L1dfPy_lsVRouSCpb3HLeGtaRrsLacGsBc8E5rYxkWrZcW6jrrmVS152ohOmkrgRUkglMSUfYUbG85XZeX6ptyFmHG-W1U38OfOiV3qU4gNK2rnHbaa5rwjmuGqIr3IimoZZTCzazPtyytlO7gc7AmIIe9qD7N6Nbq95fK0IqLonEmfDmjhD81QQxqY2LBob8beCnqBihUvBKcpmlr_-TXvopjLlWO1WNGa8x_qfqdX6BG63Pgc0OqmYyR6W4qUVWnTyiyrODjTN-BOvy-Z7D2z2HrEnwK_V6ilEtz74_CjfBxxjA3heEYLXrSrXfldnh1cMy3sv_9iD7Dbwv210</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Pan, Pan</creator><creator>Yao, Qiong</creator><creator>Shen, Jiawei</creator><creator>Hu, Lin</creator><creator>Zhao, Sijian</creator><creator>Huang, Longyu</creator><creator>Yu, Guoping</creator><creator>Zhou, Guomin</creator><creator>Zhang, Jianhua</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241101</creationdate><title>CVW-Etr: A High-Precision Method for Estimating the Severity Level of Cotton Verticillium Wilt Disease</title><author>Pan, Pan ; Yao, Qiong ; Shen, Jiawei ; Hu, Lin ; Zhao, Sijian ; Huang, Longyu ; Yu, Guoping ; Zhou, Guomin ; Zhang, Jianhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-b0b44bc3d1d50ac4ffe0474425c83a8b4afe66db38a6d757cd8a57e5837021d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automation</topic><topic>China</topic><topic>Complexity</topic><topic>Cotton</topic><topic>cotton verticillium wilt</topic><topic>crop disease severity level estimation</topic><topic>Crop diseases</topic><topic>Crop yield</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Disease control</topic><topic>Disease prevention</topic><topic>Disease resistance</topic><topic>Diseases</topic><topic>Estimation</topic><topic>Fungicides</topic><topic>Leaves</topic><topic>Lesions</topic><topic>Methods</topic><topic>MobileSAM</topic><topic>Parameters</topic><topic>Pesticides</topic><topic>Plant breeding</topic><topic>Remote sensing</topic><topic>Smartphones</topic><topic>Staphylococcal enterotoxin G</topic><topic>Textile fibers</topic><topic>Unmanned aerial vehicles</topic><topic>Verticillium wilt</topic><topic>YOLOv8-Seg</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Pan</creatorcontrib><creatorcontrib>Yao, Qiong</creatorcontrib><creatorcontrib>Shen, Jiawei</creatorcontrib><creatorcontrib>Hu, Lin</creatorcontrib><creatorcontrib>Zhao, Sijian</creatorcontrib><creatorcontrib>Huang, Longyu</creatorcontrib><creatorcontrib>Yu, Guoping</creatorcontrib><creatorcontrib>Zhou, Guomin</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Plants (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Pan</au><au>Yao, Qiong</au><au>Shen, Jiawei</au><au>Hu, Lin</au><au>Zhao, Sijian</au><au>Huang, Longyu</au><au>Yu, Guoping</au><au>Zhou, Guomin</au><au>Zhang, Jianhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CVW-Etr: A High-Precision Method for Estimating the Severity Level of Cotton Verticillium Wilt Disease</atitle><jtitle>Plants (Basel)</jtitle><addtitle>Plants (Basel)</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>13</volume><issue>21</issue><spage>2960</spage><pages>2960-</pages><issn>2223-7747</issn><eissn>2223-7747</eissn><abstract>Cotton verticillium wilt significantly impacts both cotton quality and yield. Selecting disease-resistant varieties and using their resistance genes in breeding is an effective and economical control measure. Accurate severity estimation of this disease is crucial for breeding resistant cotton varieties. However, current methods fall short, slowing the breeding process. To address these challenges, this paper introduces CVW-Etr, a high-precision method for estimating the severity of cotton verticillium wilt. CVW-Etr classifies severity into six levels (L0 to L5) based on the proportion of segmented diseased leaves to lesions. Upon integrating YOLOv8-Seg with MobileSAM, CVW-Etr demonstrates excellent performance and efficiency with limited samples in complex field conditions. It incorporates the RFCBAMConv, C2f-RFCBAMConv, AWDownSample-Lite, and GSegment modules to handle blurry transitions between healthy and diseased regions and variations in angle and distance during image collection, and to optimize the model's parameter size and computational complexity. Our experimental results show that CVW-Etr effectively segments diseased leaves and lesions, achieving a mean average precision (mAP) of 92.90% and an average severity estimation accuracy of 92.92% with only 2.6M parameters and 10.1G FLOPS. Through experiments, CVW-Etr proves robust in estimating cotton verticillium wilt severity, offering valuable insights for disease-resistant cotton breeding applications.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39519879</pmid><doi>10.3390/plants13212960</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2223-7747
ispartof Plants (Basel), 2024-11, Vol.13 (21), p.2960
issn 2223-7747
2223-7747
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_af660bda4a61440591a5097992f42fef
source Publicly Available Content Database; PubMed Central
subjects Automation
China
Complexity
Cotton
cotton verticillium wilt
crop disease severity level estimation
Crop diseases
Crop yield
Datasets
Deep learning
Disease control
Disease prevention
Disease resistance
Diseases
Estimation
Fungicides
Leaves
Lesions
Methods
MobileSAM
Parameters
Pesticides
Plant breeding
Remote sensing
Smartphones
Staphylococcal enterotoxin G
Textile fibers
Unmanned aerial vehicles
Verticillium wilt
YOLOv8-Seg
title CVW-Etr: A High-Precision Method for Estimating the Severity Level of Cotton Verticillium Wilt Disease
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T23%3A16%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CVW-Etr:%20A%20High-Precision%20Method%20for%20Estimating%20the%20Severity%20Level%20of%20Cotton%20Verticillium%20Wilt%20Disease&rft.jtitle=Plants%20(Basel)&rft.au=Pan,%20Pan&rft.date=2024-11-01&rft.volume=13&rft.issue=21&rft.spage=2960&rft.pages=2960-&rft.issn=2223-7747&rft.eissn=2223-7747&rft_id=info:doi/10.3390/plants13212960&rft_dat=%3Cgale_doaj_%3EA815420967%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c471t-b0b44bc3d1d50ac4ffe0474425c83a8b4afe66db38a6d757cd8a57e5837021d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3126034600&rft_id=info:pmid/39519879&rft_galeid=A815420967&rfr_iscdi=true