Loading…
CVW-Etr: A High-Precision Method for Estimating the Severity Level of Cotton Verticillium Wilt Disease
Cotton verticillium wilt significantly impacts both cotton quality and yield. Selecting disease-resistant varieties and using their resistance genes in breeding is an effective and economical control measure. Accurate severity estimation of this disease is crucial for breeding resistant cotton varie...
Saved in:
Published in: | Plants (Basel) 2024-11, Vol.13 (21), p.2960 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c471t-b0b44bc3d1d50ac4ffe0474425c83a8b4afe66db38a6d757cd8a57e5837021d13 |
container_end_page | |
container_issue | 21 |
container_start_page | 2960 |
container_title | Plants (Basel) |
container_volume | 13 |
creator | Pan, Pan Yao, Qiong Shen, Jiawei Hu, Lin Zhao, Sijian Huang, Longyu Yu, Guoping Zhou, Guomin Zhang, Jianhua |
description | Cotton verticillium wilt significantly impacts both cotton quality and yield. Selecting disease-resistant varieties and using their resistance genes in breeding is an effective and economical control measure. Accurate severity estimation of this disease is crucial for breeding resistant cotton varieties. However, current methods fall short, slowing the breeding process. To address these challenges, this paper introduces CVW-Etr, a high-precision method for estimating the severity of cotton verticillium wilt. CVW-Etr classifies severity into six levels (L0 to L5) based on the proportion of segmented diseased leaves to lesions. Upon integrating YOLOv8-Seg with MobileSAM, CVW-Etr demonstrates excellent performance and efficiency with limited samples in complex field conditions. It incorporates the RFCBAMConv, C2f-RFCBAMConv, AWDownSample-Lite, and GSegment modules to handle blurry transitions between healthy and diseased regions and variations in angle and distance during image collection, and to optimize the model's parameter size and computational complexity. Our experimental results show that CVW-Etr effectively segments diseased leaves and lesions, achieving a mean average precision (mAP) of 92.90% and an average severity estimation accuracy of 92.92% with only 2.6M parameters and 10.1G FLOPS. Through experiments, CVW-Etr proves robust in estimating cotton verticillium wilt severity, offering valuable insights for disease-resistant cotton breeding applications. |
doi_str_mv | 10.3390/plants13212960 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_af660bda4a61440591a5097992f42fef</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A815420967</galeid><doaj_id>oai_doaj_org_article_af660bda4a61440591a5097992f42fef</doaj_id><sourcerecordid>A815420967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-b0b44bc3d1d50ac4ffe0474425c83a8b4afe66db38a6d757cd8a57e5837021d13</originalsourceid><addsrcrecordid>eNptkt9vFCEQxzdGY5vaVx8NiS_6sJVfu7C-mMt52kvOaKy2j4Rlhz2aveUKbGP_ezlba88USJjAdz4zDFMULwk-YazB77aDHlMkjBLa1PhJcUgpZaUQXDx9YB8UxzFe4jxkXqR-XhywpiKNFM1hYefnF-Uihfdohk5dvy6_BTAuOj-iL5DWvkPWB7SIyW10cmOP0hrQGVxDcOkGrbIxIG_R3KeUXc4hJGfcMLhpgy7ckNBHF0FHeFE8s3qIcHy3HxU_Py1-zE_L1dfPy_lsVRouSCpb3HLeGtaRrsLacGsBc8E5rYxkWrZcW6jrrmVS152ohOmkrgRUkglMSUfYUbG85XZeX6ptyFmHG-W1U38OfOiV3qU4gNK2rnHbaa5rwjmuGqIr3IimoZZTCzazPtyytlO7gc7AmIIe9qD7N6Nbq95fK0IqLonEmfDmjhD81QQxqY2LBob8beCnqBihUvBKcpmlr_-TXvopjLlWO1WNGa8x_qfqdX6BG63Pgc0OqmYyR6W4qUVWnTyiyrODjTN-BOvy-Z7D2z2HrEnwK_V6ilEtz74_CjfBxxjA3heEYLXrSrXfldnh1cMy3sv_9iD7Dbwv210</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126034600</pqid></control><display><type>article</type><title>CVW-Etr: A High-Precision Method for Estimating the Severity Level of Cotton Verticillium Wilt Disease</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Pan, Pan ; Yao, Qiong ; Shen, Jiawei ; Hu, Lin ; Zhao, Sijian ; Huang, Longyu ; Yu, Guoping ; Zhou, Guomin ; Zhang, Jianhua</creator><creatorcontrib>Pan, Pan ; Yao, Qiong ; Shen, Jiawei ; Hu, Lin ; Zhao, Sijian ; Huang, Longyu ; Yu, Guoping ; Zhou, Guomin ; Zhang, Jianhua</creatorcontrib><description>Cotton verticillium wilt significantly impacts both cotton quality and yield. Selecting disease-resistant varieties and using their resistance genes in breeding is an effective and economical control measure. Accurate severity estimation of this disease is crucial for breeding resistant cotton varieties. However, current methods fall short, slowing the breeding process. To address these challenges, this paper introduces CVW-Etr, a high-precision method for estimating the severity of cotton verticillium wilt. CVW-Etr classifies severity into six levels (L0 to L5) based on the proportion of segmented diseased leaves to lesions. Upon integrating YOLOv8-Seg with MobileSAM, CVW-Etr demonstrates excellent performance and efficiency with limited samples in complex field conditions. It incorporates the RFCBAMConv, C2f-RFCBAMConv, AWDownSample-Lite, and GSegment modules to handle blurry transitions between healthy and diseased regions and variations in angle and distance during image collection, and to optimize the model's parameter size and computational complexity. Our experimental results show that CVW-Etr effectively segments diseased leaves and lesions, achieving a mean average precision (mAP) of 92.90% and an average severity estimation accuracy of 92.92% with only 2.6M parameters and 10.1G FLOPS. Through experiments, CVW-Etr proves robust in estimating cotton verticillium wilt severity, offering valuable insights for disease-resistant cotton breeding applications.</description><identifier>ISSN: 2223-7747</identifier><identifier>EISSN: 2223-7747</identifier><identifier>DOI: 10.3390/plants13212960</identifier><identifier>PMID: 39519879</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Automation ; China ; Complexity ; Cotton ; cotton verticillium wilt ; crop disease severity level estimation ; Crop diseases ; Crop yield ; Datasets ; Deep learning ; Disease control ; Disease prevention ; Disease resistance ; Diseases ; Estimation ; Fungicides ; Leaves ; Lesions ; Methods ; MobileSAM ; Parameters ; Pesticides ; Plant breeding ; Remote sensing ; Smartphones ; Staphylococcal enterotoxin G ; Textile fibers ; Unmanned aerial vehicles ; Verticillium wilt ; YOLOv8-Seg</subject><ispartof>Plants (Basel), 2024-11, Vol.13 (21), p.2960</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c471t-b0b44bc3d1d50ac4ffe0474425c83a8b4afe66db38a6d757cd8a57e5837021d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3126034600/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3126034600?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39519879$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Pan</creatorcontrib><creatorcontrib>Yao, Qiong</creatorcontrib><creatorcontrib>Shen, Jiawei</creatorcontrib><creatorcontrib>Hu, Lin</creatorcontrib><creatorcontrib>Zhao, Sijian</creatorcontrib><creatorcontrib>Huang, Longyu</creatorcontrib><creatorcontrib>Yu, Guoping</creatorcontrib><creatorcontrib>Zhou, Guomin</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><title>CVW-Etr: A High-Precision Method for Estimating the Severity Level of Cotton Verticillium Wilt Disease</title><title>Plants (Basel)</title><addtitle>Plants (Basel)</addtitle><description>Cotton verticillium wilt significantly impacts both cotton quality and yield. Selecting disease-resistant varieties and using their resistance genes in breeding is an effective and economical control measure. Accurate severity estimation of this disease is crucial for breeding resistant cotton varieties. However, current methods fall short, slowing the breeding process. To address these challenges, this paper introduces CVW-Etr, a high-precision method for estimating the severity of cotton verticillium wilt. CVW-Etr classifies severity into six levels (L0 to L5) based on the proportion of segmented diseased leaves to lesions. Upon integrating YOLOv8-Seg with MobileSAM, CVW-Etr demonstrates excellent performance and efficiency with limited samples in complex field conditions. It incorporates the RFCBAMConv, C2f-RFCBAMConv, AWDownSample-Lite, and GSegment modules to handle blurry transitions between healthy and diseased regions and variations in angle and distance during image collection, and to optimize the model's parameter size and computational complexity. Our experimental results show that CVW-Etr effectively segments diseased leaves and lesions, achieving a mean average precision (mAP) of 92.90% and an average severity estimation accuracy of 92.92% with only 2.6M parameters and 10.1G FLOPS. Through experiments, CVW-Etr proves robust in estimating cotton verticillium wilt severity, offering valuable insights for disease-resistant cotton breeding applications.</description><subject>Automation</subject><subject>China</subject><subject>Complexity</subject><subject>Cotton</subject><subject>cotton verticillium wilt</subject><subject>crop disease severity level estimation</subject><subject>Crop diseases</subject><subject>Crop yield</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Disease control</subject><subject>Disease prevention</subject><subject>Disease resistance</subject><subject>Diseases</subject><subject>Estimation</subject><subject>Fungicides</subject><subject>Leaves</subject><subject>Lesions</subject><subject>Methods</subject><subject>MobileSAM</subject><subject>Parameters</subject><subject>Pesticides</subject><subject>Plant breeding</subject><subject>Remote sensing</subject><subject>Smartphones</subject><subject>Staphylococcal enterotoxin G</subject><subject>Textile fibers</subject><subject>Unmanned aerial vehicles</subject><subject>Verticillium wilt</subject><subject>YOLOv8-Seg</subject><issn>2223-7747</issn><issn>2223-7747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkt9vFCEQxzdGY5vaVx8NiS_6sJVfu7C-mMt52kvOaKy2j4Rlhz2aveUKbGP_ezlba88USJjAdz4zDFMULwk-YazB77aDHlMkjBLa1PhJcUgpZaUQXDx9YB8UxzFe4jxkXqR-XhywpiKNFM1hYefnF-Uihfdohk5dvy6_BTAuOj-iL5DWvkPWB7SIyW10cmOP0hrQGVxDcOkGrbIxIG_R3KeUXc4hJGfcMLhpgy7ckNBHF0FHeFE8s3qIcHy3HxU_Py1-zE_L1dfPy_lsVRouSCpb3HLeGtaRrsLacGsBc8E5rYxkWrZcW6jrrmVS152ohOmkrgRUkglMSUfYUbG85XZeX6ptyFmHG-W1U38OfOiV3qU4gNK2rnHbaa5rwjmuGqIr3IimoZZTCzazPtyytlO7gc7AmIIe9qD7N6Nbq95fK0IqLonEmfDmjhD81QQxqY2LBob8beCnqBihUvBKcpmlr_-TXvopjLlWO1WNGa8x_qfqdX6BG63Pgc0OqmYyR6W4qUVWnTyiyrODjTN-BOvy-Z7D2z2HrEnwK_V6ilEtz74_CjfBxxjA3heEYLXrSrXfldnh1cMy3sv_9iD7Dbwv210</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Pan, Pan</creator><creator>Yao, Qiong</creator><creator>Shen, Jiawei</creator><creator>Hu, Lin</creator><creator>Zhao, Sijian</creator><creator>Huang, Longyu</creator><creator>Yu, Guoping</creator><creator>Zhou, Guomin</creator><creator>Zhang, Jianhua</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241101</creationdate><title>CVW-Etr: A High-Precision Method for Estimating the Severity Level of Cotton Verticillium Wilt Disease</title><author>Pan, Pan ; Yao, Qiong ; Shen, Jiawei ; Hu, Lin ; Zhao, Sijian ; Huang, Longyu ; Yu, Guoping ; Zhou, Guomin ; Zhang, Jianhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-b0b44bc3d1d50ac4ffe0474425c83a8b4afe66db38a6d757cd8a57e5837021d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automation</topic><topic>China</topic><topic>Complexity</topic><topic>Cotton</topic><topic>cotton verticillium wilt</topic><topic>crop disease severity level estimation</topic><topic>Crop diseases</topic><topic>Crop yield</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Disease control</topic><topic>Disease prevention</topic><topic>Disease resistance</topic><topic>Diseases</topic><topic>Estimation</topic><topic>Fungicides</topic><topic>Leaves</topic><topic>Lesions</topic><topic>Methods</topic><topic>MobileSAM</topic><topic>Parameters</topic><topic>Pesticides</topic><topic>Plant breeding</topic><topic>Remote sensing</topic><topic>Smartphones</topic><topic>Staphylococcal enterotoxin G</topic><topic>Textile fibers</topic><topic>Unmanned aerial vehicles</topic><topic>Verticillium wilt</topic><topic>YOLOv8-Seg</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Pan</creatorcontrib><creatorcontrib>Yao, Qiong</creatorcontrib><creatorcontrib>Shen, Jiawei</creatorcontrib><creatorcontrib>Hu, Lin</creatorcontrib><creatorcontrib>Zhao, Sijian</creatorcontrib><creatorcontrib>Huang, Longyu</creatorcontrib><creatorcontrib>Yu, Guoping</creatorcontrib><creatorcontrib>Zhou, Guomin</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Plants (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Pan</au><au>Yao, Qiong</au><au>Shen, Jiawei</au><au>Hu, Lin</au><au>Zhao, Sijian</au><au>Huang, Longyu</au><au>Yu, Guoping</au><au>Zhou, Guomin</au><au>Zhang, Jianhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CVW-Etr: A High-Precision Method for Estimating the Severity Level of Cotton Verticillium Wilt Disease</atitle><jtitle>Plants (Basel)</jtitle><addtitle>Plants (Basel)</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>13</volume><issue>21</issue><spage>2960</spage><pages>2960-</pages><issn>2223-7747</issn><eissn>2223-7747</eissn><abstract>Cotton verticillium wilt significantly impacts both cotton quality and yield. Selecting disease-resistant varieties and using their resistance genes in breeding is an effective and economical control measure. Accurate severity estimation of this disease is crucial for breeding resistant cotton varieties. However, current methods fall short, slowing the breeding process. To address these challenges, this paper introduces CVW-Etr, a high-precision method for estimating the severity of cotton verticillium wilt. CVW-Etr classifies severity into six levels (L0 to L5) based on the proportion of segmented diseased leaves to lesions. Upon integrating YOLOv8-Seg with MobileSAM, CVW-Etr demonstrates excellent performance and efficiency with limited samples in complex field conditions. It incorporates the RFCBAMConv, C2f-RFCBAMConv, AWDownSample-Lite, and GSegment modules to handle blurry transitions between healthy and diseased regions and variations in angle and distance during image collection, and to optimize the model's parameter size and computational complexity. Our experimental results show that CVW-Etr effectively segments diseased leaves and lesions, achieving a mean average precision (mAP) of 92.90% and an average severity estimation accuracy of 92.92% with only 2.6M parameters and 10.1G FLOPS. Through experiments, CVW-Etr proves robust in estimating cotton verticillium wilt severity, offering valuable insights for disease-resistant cotton breeding applications.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39519879</pmid><doi>10.3390/plants13212960</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2223-7747 |
ispartof | Plants (Basel), 2024-11, Vol.13 (21), p.2960 |
issn | 2223-7747 2223-7747 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_af660bda4a61440591a5097992f42fef |
source | Publicly Available Content Database; PubMed Central |
subjects | Automation China Complexity Cotton cotton verticillium wilt crop disease severity level estimation Crop diseases Crop yield Datasets Deep learning Disease control Disease prevention Disease resistance Diseases Estimation Fungicides Leaves Lesions Methods MobileSAM Parameters Pesticides Plant breeding Remote sensing Smartphones Staphylococcal enterotoxin G Textile fibers Unmanned aerial vehicles Verticillium wilt YOLOv8-Seg |
title | CVW-Etr: A High-Precision Method for Estimating the Severity Level of Cotton Verticillium Wilt Disease |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T23%3A16%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CVW-Etr:%20A%20High-Precision%20Method%20for%20Estimating%20the%20Severity%20Level%20of%20Cotton%20Verticillium%20Wilt%20Disease&rft.jtitle=Plants%20(Basel)&rft.au=Pan,%20Pan&rft.date=2024-11-01&rft.volume=13&rft.issue=21&rft.spage=2960&rft.pages=2960-&rft.issn=2223-7747&rft.eissn=2223-7747&rft_id=info:doi/10.3390/plants13212960&rft_dat=%3Cgale_doaj_%3EA815420967%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c471t-b0b44bc3d1d50ac4ffe0474425c83a8b4afe66db38a6d757cd8a57e5837021d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3126034600&rft_id=info:pmid/39519879&rft_galeid=A815420967&rfr_iscdi=true |