Loading…

Electronic Processes at the Carbon-Covered (100) Collector Tungsten Surface

We have performed density functional VASP calculations of a pure and of a carbon-covered (100) tungsten surface under the presence of an electric field E directed away from the surface. Our aim is to answer the question of an increased penetrability of electrons at the collector side of a nanometric...

Full description

Saved in:
Bibliographic Details
Published in:Micromachines (Basel) 2022-05, Vol.13 (6), p.888
Main Authors: Gotsis, Harilaos J., Bacalis, Naoum C., Xanthakis, John P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c418t-11b70f4a7d99694ce81685bb840e55e6d3ce39bc2736bd43365602503e68faee3
cites cdi_FETCH-LOGICAL-c418t-11b70f4a7d99694ce81685bb840e55e6d3ce39bc2736bd43365602503e68faee3
container_end_page
container_issue 6
container_start_page 888
container_title Micromachines (Basel)
container_volume 13
creator Gotsis, Harilaos J.
Bacalis, Naoum C.
Xanthakis, John P.
description We have performed density functional VASP calculations of a pure and of a carbon-covered (100) tungsten surface under the presence of an electric field E directed away from the surface. Our aim is to answer the question of an increased penetrability of electrons at the collector side of a nanometric tunnel diode when covered by carbon atoms, a purely quantum mechanical effect related to the value of the workfunction Φ. To obtain Φ at a non-zero electric field we have extrapolated back to the electrical surface the straight line representing the linear increase in the potential energy with distance outside the metal-vacuum interface. We have found that under the presence of E the workfunction Φ = Evac − EF of the (100) pure tungsten surface has a minor dependence on E. However, the carbon-covered tungsten (100) surface workfunction Φ(C − W) has a stronger E dependence. Φ(C − W) decreases continuously with the electric field. This decrease is ΔΦ = 0.08 eV when E = 1 V/nm. This ΔΦ is explained by our calculated changes with electric field of the electronic density of both pure and carbon-covered tungsten. The observed phenomena may be relevant to other surfaces of carbon-covered tungsten and may explain the reported collector dependence of current in Scanning Field Emission Microscopy.
doi_str_mv 10.3390/mi13060888
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_af6a6b536fad49a1b76022316aad3a26</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A722102914</galeid><doaj_id>oai_doaj_org_article_af6a6b536fad49a1b76022316aad3a26</doaj_id><sourcerecordid>A722102914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-11b70f4a7d99694ce81685bb840e55e6d3ce39bc2736bd43365602503e68faee3</originalsourceid><addsrcrecordid>eNpdkl1rFTEQhhex2NL2xl-w4E0Vts13NjdCWaoWCwpW8C7MZmdPc9hNarJb8N-b4ylqm0AmTN55ZiZMVb2m5JxzQy5mTzlRpG3bF9URI5o1SqkfL_-7H1anOW9JWVqbcryqDrnUQkjCjqrPVxO6JcXgXf01RYc5Y65hqZc7rDtIfQxNFx8w4VCfUULe1l2cdiEx1bdr2OQFQ_1tTSM4PKkORpgynj7a4-r7h6vb7lNz8-XjdXd50zhB26WhtNdkFKAHY5QRDluqWtn3rSAoJaqBO-Smd0xz1Q-CcyUVYZJwVO0IiPy4ut5zhwhbe5_8DOmXjeDtH0dMGwtp8W5CC6MC1UuuRhiEgZK5oBinCmDgwFRhvd-z7td-xsFhWBJMT6BPX4K_s5v4YA3jRApRAGePgBR_rpgXO_vscJogYFyzZaqlRFBlTJG-eSbdxjWF8lVFpY3WsjRbVOd71QZKAz6MseR1ZQ84excDjr74LzVjlDBDdxW82we4FHNOOP6tnhK7mxH7b0b4b4Vpqpg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679775433</pqid></control><display><type>article</type><title>Electronic Processes at the Carbon-Covered (100) Collector Tungsten Surface</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Gotsis, Harilaos J. ; Bacalis, Naoum C. ; Xanthakis, John P.</creator><creatorcontrib>Gotsis, Harilaos J. ; Bacalis, Naoum C. ; Xanthakis, John P.</creatorcontrib><description>We have performed density functional VASP calculations of a pure and of a carbon-covered (100) tungsten surface under the presence of an electric field E directed away from the surface. Our aim is to answer the question of an increased penetrability of electrons at the collector side of a nanometric tunnel diode when covered by carbon atoms, a purely quantum mechanical effect related to the value of the workfunction Φ. To obtain Φ at a non-zero electric field we have extrapolated back to the electrical surface the straight line representing the linear increase in the potential energy with distance outside the metal-vacuum interface. We have found that under the presence of E the workfunction Φ = Evac − EF of the (100) pure tungsten surface has a minor dependence on E. However, the carbon-covered tungsten (100) surface workfunction Φ(C − W) has a stronger E dependence. Φ(C − W) decreases continuously with the electric field. This decrease is ΔΦ = 0.08 eV when E = 1 V/nm. This ΔΦ is explained by our calculated changes with electric field of the electronic density of both pure and carbon-covered tungsten. The observed phenomena may be relevant to other surfaces of carbon-covered tungsten and may explain the reported collector dependence of current in Scanning Field Emission Microscopy.</description><identifier>ISSN: 2072-666X</identifier><identifier>EISSN: 2072-666X</identifier><identifier>DOI: 10.3390/mi13060888</identifier><identifier>PMID: 35744502</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Boundary conditions ; Carbon ; carbon-covered tungsten surface ; Density ; Electric fields ; Experiments ; Field emission microscopy ; Mathematical analysis ; Potential energy ; Quantum mechanics ; Scanning field emission microscopy ; scanning microscopy ; Straight lines ; Tungsten ; tunnel diode ; Tunnel diodes ; VASP calculation ; workfunction</subject><ispartof>Micromachines (Basel), 2022-05, Vol.13 (6), p.888</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-11b70f4a7d99694ce81685bb840e55e6d3ce39bc2736bd43365602503e68faee3</citedby><cites>FETCH-LOGICAL-c418t-11b70f4a7d99694ce81685bb840e55e6d3ce39bc2736bd43365602503e68faee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2679775433/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2679775433?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Gotsis, Harilaos J.</creatorcontrib><creatorcontrib>Bacalis, Naoum C.</creatorcontrib><creatorcontrib>Xanthakis, John P.</creatorcontrib><title>Electronic Processes at the Carbon-Covered (100) Collector Tungsten Surface</title><title>Micromachines (Basel)</title><description>We have performed density functional VASP calculations of a pure and of a carbon-covered (100) tungsten surface under the presence of an electric field E directed away from the surface. Our aim is to answer the question of an increased penetrability of electrons at the collector side of a nanometric tunnel diode when covered by carbon atoms, a purely quantum mechanical effect related to the value of the workfunction Φ. To obtain Φ at a non-zero electric field we have extrapolated back to the electrical surface the straight line representing the linear increase in the potential energy with distance outside the metal-vacuum interface. We have found that under the presence of E the workfunction Φ = Evac − EF of the (100) pure tungsten surface has a minor dependence on E. However, the carbon-covered tungsten (100) surface workfunction Φ(C − W) has a stronger E dependence. Φ(C − W) decreases continuously with the electric field. This decrease is ΔΦ = 0.08 eV when E = 1 V/nm. This ΔΦ is explained by our calculated changes with electric field of the electronic density of both pure and carbon-covered tungsten. The observed phenomena may be relevant to other surfaces of carbon-covered tungsten and may explain the reported collector dependence of current in Scanning Field Emission Microscopy.</description><subject>Boundary conditions</subject><subject>Carbon</subject><subject>carbon-covered tungsten surface</subject><subject>Density</subject><subject>Electric fields</subject><subject>Experiments</subject><subject>Field emission microscopy</subject><subject>Mathematical analysis</subject><subject>Potential energy</subject><subject>Quantum mechanics</subject><subject>Scanning field emission microscopy</subject><subject>scanning microscopy</subject><subject>Straight lines</subject><subject>Tungsten</subject><subject>tunnel diode</subject><subject>Tunnel diodes</subject><subject>VASP calculation</subject><subject>workfunction</subject><issn>2072-666X</issn><issn>2072-666X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkl1rFTEQhhex2NL2xl-w4E0Vts13NjdCWaoWCwpW8C7MZmdPc9hNarJb8N-b4ylqm0AmTN55ZiZMVb2m5JxzQy5mTzlRpG3bF9URI5o1SqkfL_-7H1anOW9JWVqbcryqDrnUQkjCjqrPVxO6JcXgXf01RYc5Y65hqZc7rDtIfQxNFx8w4VCfUULe1l2cdiEx1bdr2OQFQ_1tTSM4PKkORpgynj7a4-r7h6vb7lNz8-XjdXd50zhB26WhtNdkFKAHY5QRDluqWtn3rSAoJaqBO-Smd0xz1Q-CcyUVYZJwVO0IiPy4ut5zhwhbe5_8DOmXjeDtH0dMGwtp8W5CC6MC1UuuRhiEgZK5oBinCmDgwFRhvd-z7td-xsFhWBJMT6BPX4K_s5v4YA3jRApRAGePgBR_rpgXO_vscJogYFyzZaqlRFBlTJG-eSbdxjWF8lVFpY3WsjRbVOd71QZKAz6MseR1ZQ84excDjr74LzVjlDBDdxW82we4FHNOOP6tnhK7mxH7b0b4b4Vpqpg</recordid><startdate>20220531</startdate><enddate>20220531</enddate><creator>Gotsis, Harilaos J.</creator><creator>Bacalis, Naoum C.</creator><creator>Xanthakis, John P.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220531</creationdate><title>Electronic Processes at the Carbon-Covered (100) Collector Tungsten Surface</title><author>Gotsis, Harilaos J. ; Bacalis, Naoum C. ; Xanthakis, John P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-11b70f4a7d99694ce81685bb840e55e6d3ce39bc2736bd43365602503e68faee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary conditions</topic><topic>Carbon</topic><topic>carbon-covered tungsten surface</topic><topic>Density</topic><topic>Electric fields</topic><topic>Experiments</topic><topic>Field emission microscopy</topic><topic>Mathematical analysis</topic><topic>Potential energy</topic><topic>Quantum mechanics</topic><topic>Scanning field emission microscopy</topic><topic>scanning microscopy</topic><topic>Straight lines</topic><topic>Tungsten</topic><topic>tunnel diode</topic><topic>Tunnel diodes</topic><topic>VASP calculation</topic><topic>workfunction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gotsis, Harilaos J.</creatorcontrib><creatorcontrib>Bacalis, Naoum C.</creatorcontrib><creatorcontrib>Xanthakis, John P.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Micromachines (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gotsis, Harilaos J.</au><au>Bacalis, Naoum C.</au><au>Xanthakis, John P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic Processes at the Carbon-Covered (100) Collector Tungsten Surface</atitle><jtitle>Micromachines (Basel)</jtitle><date>2022-05-31</date><risdate>2022</risdate><volume>13</volume><issue>6</issue><spage>888</spage><pages>888-</pages><issn>2072-666X</issn><eissn>2072-666X</eissn><abstract>We have performed density functional VASP calculations of a pure and of a carbon-covered (100) tungsten surface under the presence of an electric field E directed away from the surface. Our aim is to answer the question of an increased penetrability of electrons at the collector side of a nanometric tunnel diode when covered by carbon atoms, a purely quantum mechanical effect related to the value of the workfunction Φ. To obtain Φ at a non-zero electric field we have extrapolated back to the electrical surface the straight line representing the linear increase in the potential energy with distance outside the metal-vacuum interface. We have found that under the presence of E the workfunction Φ = Evac − EF of the (100) pure tungsten surface has a minor dependence on E. However, the carbon-covered tungsten (100) surface workfunction Φ(C − W) has a stronger E dependence. Φ(C − W) decreases continuously with the electric field. This decrease is ΔΦ = 0.08 eV when E = 1 V/nm. This ΔΦ is explained by our calculated changes with electric field of the electronic density of both pure and carbon-covered tungsten. The observed phenomena may be relevant to other surfaces of carbon-covered tungsten and may explain the reported collector dependence of current in Scanning Field Emission Microscopy.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35744502</pmid><doi>10.3390/mi13060888</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-666X
ispartof Micromachines (Basel), 2022-05, Vol.13 (6), p.888
issn 2072-666X
2072-666X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_af6a6b536fad49a1b76022316aad3a26
source PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Boundary conditions
Carbon
carbon-covered tungsten surface
Density
Electric fields
Experiments
Field emission microscopy
Mathematical analysis
Potential energy
Quantum mechanics
Scanning field emission microscopy
scanning microscopy
Straight lines
Tungsten
tunnel diode
Tunnel diodes
VASP calculation
workfunction
title Electronic Processes at the Carbon-Covered (100) Collector Tungsten Surface
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A20%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20Processes%20at%20the%20Carbon-Covered%20(100)%20Collector%20Tungsten%20Surface&rft.jtitle=Micromachines%20(Basel)&rft.au=Gotsis,%20Harilaos%20J.&rft.date=2022-05-31&rft.volume=13&rft.issue=6&rft.spage=888&rft.pages=888-&rft.issn=2072-666X&rft.eissn=2072-666X&rft_id=info:doi/10.3390/mi13060888&rft_dat=%3Cgale_doaj_%3EA722102914%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-11b70f4a7d99694ce81685bb840e55e6d3ce39bc2736bd43365602503e68faee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2679775433&rft_id=info:pmid/35744502&rft_galeid=A722102914&rfr_iscdi=true