Loading…
Electronic Processes at the Carbon-Covered (100) Collector Tungsten Surface
We have performed density functional VASP calculations of a pure and of a carbon-covered (100) tungsten surface under the presence of an electric field E directed away from the surface. Our aim is to answer the question of an increased penetrability of electrons at the collector side of a nanometric...
Saved in:
Published in: | Micromachines (Basel) 2022-05, Vol.13 (6), p.888 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c418t-11b70f4a7d99694ce81685bb840e55e6d3ce39bc2736bd43365602503e68faee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c418t-11b70f4a7d99694ce81685bb840e55e6d3ce39bc2736bd43365602503e68faee3 |
container_end_page | |
container_issue | 6 |
container_start_page | 888 |
container_title | Micromachines (Basel) |
container_volume | 13 |
creator | Gotsis, Harilaos J. Bacalis, Naoum C. Xanthakis, John P. |
description | We have performed density functional VASP calculations of a pure and of a carbon-covered (100) tungsten surface under the presence of an electric field E directed away from the surface. Our aim is to answer the question of an increased penetrability of electrons at the collector side of a nanometric tunnel diode when covered by carbon atoms, a purely quantum mechanical effect related to the value of the workfunction Φ. To obtain Φ at a non-zero electric field we have extrapolated back to the electrical surface the straight line representing the linear increase in the potential energy with distance outside the metal-vacuum interface. We have found that under the presence of E the workfunction Φ = Evac − EF of the (100) pure tungsten surface has a minor dependence on E. However, the carbon-covered tungsten (100) surface workfunction Φ(C − W) has a stronger E dependence. Φ(C − W) decreases continuously with the electric field. This decrease is ΔΦ = 0.08 eV when E = 1 V/nm. This ΔΦ is explained by our calculated changes with electric field of the electronic density of both pure and carbon-covered tungsten. The observed phenomena may be relevant to other surfaces of carbon-covered tungsten and may explain the reported collector dependence of current in Scanning Field Emission Microscopy. |
doi_str_mv | 10.3390/mi13060888 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_af6a6b536fad49a1b76022316aad3a26</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A722102914</galeid><doaj_id>oai_doaj_org_article_af6a6b536fad49a1b76022316aad3a26</doaj_id><sourcerecordid>A722102914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-11b70f4a7d99694ce81685bb840e55e6d3ce39bc2736bd43365602503e68faee3</originalsourceid><addsrcrecordid>eNpdkl1rFTEQhhex2NL2xl-w4E0Vts13NjdCWaoWCwpW8C7MZmdPc9hNarJb8N-b4ylqm0AmTN55ZiZMVb2m5JxzQy5mTzlRpG3bF9URI5o1SqkfL_-7H1anOW9JWVqbcryqDrnUQkjCjqrPVxO6JcXgXf01RYc5Y65hqZc7rDtIfQxNFx8w4VCfUULe1l2cdiEx1bdr2OQFQ_1tTSM4PKkORpgynj7a4-r7h6vb7lNz8-XjdXd50zhB26WhtNdkFKAHY5QRDluqWtn3rSAoJaqBO-Smd0xz1Q-CcyUVYZJwVO0IiPy4ut5zhwhbe5_8DOmXjeDtH0dMGwtp8W5CC6MC1UuuRhiEgZK5oBinCmDgwFRhvd-z7td-xsFhWBJMT6BPX4K_s5v4YA3jRApRAGePgBR_rpgXO_vscJogYFyzZaqlRFBlTJG-eSbdxjWF8lVFpY3WsjRbVOd71QZKAz6MseR1ZQ84excDjr74LzVjlDBDdxW82we4FHNOOP6tnhK7mxH7b0b4b4Vpqpg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679775433</pqid></control><display><type>article</type><title>Electronic Processes at the Carbon-Covered (100) Collector Tungsten Surface</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Gotsis, Harilaos J. ; Bacalis, Naoum C. ; Xanthakis, John P.</creator><creatorcontrib>Gotsis, Harilaos J. ; Bacalis, Naoum C. ; Xanthakis, John P.</creatorcontrib><description>We have performed density functional VASP calculations of a pure and of a carbon-covered (100) tungsten surface under the presence of an electric field E directed away from the surface. Our aim is to answer the question of an increased penetrability of electrons at the collector side of a nanometric tunnel diode when covered by carbon atoms, a purely quantum mechanical effect related to the value of the workfunction Φ. To obtain Φ at a non-zero electric field we have extrapolated back to the electrical surface the straight line representing the linear increase in the potential energy with distance outside the metal-vacuum interface. We have found that under the presence of E the workfunction Φ = Evac − EF of the (100) pure tungsten surface has a minor dependence on E. However, the carbon-covered tungsten (100) surface workfunction Φ(C − W) has a stronger E dependence. Φ(C − W) decreases continuously with the electric field. This decrease is ΔΦ = 0.08 eV when E = 1 V/nm. This ΔΦ is explained by our calculated changes with electric field of the electronic density of both pure and carbon-covered tungsten. The observed phenomena may be relevant to other surfaces of carbon-covered tungsten and may explain the reported collector dependence of current in Scanning Field Emission Microscopy.</description><identifier>ISSN: 2072-666X</identifier><identifier>EISSN: 2072-666X</identifier><identifier>DOI: 10.3390/mi13060888</identifier><identifier>PMID: 35744502</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Boundary conditions ; Carbon ; carbon-covered tungsten surface ; Density ; Electric fields ; Experiments ; Field emission microscopy ; Mathematical analysis ; Potential energy ; Quantum mechanics ; Scanning field emission microscopy ; scanning microscopy ; Straight lines ; Tungsten ; tunnel diode ; Tunnel diodes ; VASP calculation ; workfunction</subject><ispartof>Micromachines (Basel), 2022-05, Vol.13 (6), p.888</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-11b70f4a7d99694ce81685bb840e55e6d3ce39bc2736bd43365602503e68faee3</citedby><cites>FETCH-LOGICAL-c418t-11b70f4a7d99694ce81685bb840e55e6d3ce39bc2736bd43365602503e68faee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2679775433/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2679775433?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Gotsis, Harilaos J.</creatorcontrib><creatorcontrib>Bacalis, Naoum C.</creatorcontrib><creatorcontrib>Xanthakis, John P.</creatorcontrib><title>Electronic Processes at the Carbon-Covered (100) Collector Tungsten Surface</title><title>Micromachines (Basel)</title><description>We have performed density functional VASP calculations of a pure and of a carbon-covered (100) tungsten surface under the presence of an electric field E directed away from the surface. Our aim is to answer the question of an increased penetrability of electrons at the collector side of a nanometric tunnel diode when covered by carbon atoms, a purely quantum mechanical effect related to the value of the workfunction Φ. To obtain Φ at a non-zero electric field we have extrapolated back to the electrical surface the straight line representing the linear increase in the potential energy with distance outside the metal-vacuum interface. We have found that under the presence of E the workfunction Φ = Evac − EF of the (100) pure tungsten surface has a minor dependence on E. However, the carbon-covered tungsten (100) surface workfunction Φ(C − W) has a stronger E dependence. Φ(C − W) decreases continuously with the electric field. This decrease is ΔΦ = 0.08 eV when E = 1 V/nm. This ΔΦ is explained by our calculated changes with electric field of the electronic density of both pure and carbon-covered tungsten. The observed phenomena may be relevant to other surfaces of carbon-covered tungsten and may explain the reported collector dependence of current in Scanning Field Emission Microscopy.</description><subject>Boundary conditions</subject><subject>Carbon</subject><subject>carbon-covered tungsten surface</subject><subject>Density</subject><subject>Electric fields</subject><subject>Experiments</subject><subject>Field emission microscopy</subject><subject>Mathematical analysis</subject><subject>Potential energy</subject><subject>Quantum mechanics</subject><subject>Scanning field emission microscopy</subject><subject>scanning microscopy</subject><subject>Straight lines</subject><subject>Tungsten</subject><subject>tunnel diode</subject><subject>Tunnel diodes</subject><subject>VASP calculation</subject><subject>workfunction</subject><issn>2072-666X</issn><issn>2072-666X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkl1rFTEQhhex2NL2xl-w4E0Vts13NjdCWaoWCwpW8C7MZmdPc9hNarJb8N-b4ylqm0AmTN55ZiZMVb2m5JxzQy5mTzlRpG3bF9URI5o1SqkfL_-7H1anOW9JWVqbcryqDrnUQkjCjqrPVxO6JcXgXf01RYc5Y65hqZc7rDtIfQxNFx8w4VCfUULe1l2cdiEx1bdr2OQFQ_1tTSM4PKkORpgynj7a4-r7h6vb7lNz8-XjdXd50zhB26WhtNdkFKAHY5QRDluqWtn3rSAoJaqBO-Smd0xz1Q-CcyUVYZJwVO0IiPy4ut5zhwhbe5_8DOmXjeDtH0dMGwtp8W5CC6MC1UuuRhiEgZK5oBinCmDgwFRhvd-z7td-xsFhWBJMT6BPX4K_s5v4YA3jRApRAGePgBR_rpgXO_vscJogYFyzZaqlRFBlTJG-eSbdxjWF8lVFpY3WsjRbVOd71QZKAz6MseR1ZQ84excDjr74LzVjlDBDdxW82we4FHNOOP6tnhK7mxH7b0b4b4Vpqpg</recordid><startdate>20220531</startdate><enddate>20220531</enddate><creator>Gotsis, Harilaos J.</creator><creator>Bacalis, Naoum C.</creator><creator>Xanthakis, John P.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220531</creationdate><title>Electronic Processes at the Carbon-Covered (100) Collector Tungsten Surface</title><author>Gotsis, Harilaos J. ; Bacalis, Naoum C. ; Xanthakis, John P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-11b70f4a7d99694ce81685bb840e55e6d3ce39bc2736bd43365602503e68faee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary conditions</topic><topic>Carbon</topic><topic>carbon-covered tungsten surface</topic><topic>Density</topic><topic>Electric fields</topic><topic>Experiments</topic><topic>Field emission microscopy</topic><topic>Mathematical analysis</topic><topic>Potential energy</topic><topic>Quantum mechanics</topic><topic>Scanning field emission microscopy</topic><topic>scanning microscopy</topic><topic>Straight lines</topic><topic>Tungsten</topic><topic>tunnel diode</topic><topic>Tunnel diodes</topic><topic>VASP calculation</topic><topic>workfunction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gotsis, Harilaos J.</creatorcontrib><creatorcontrib>Bacalis, Naoum C.</creatorcontrib><creatorcontrib>Xanthakis, John P.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Micromachines (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gotsis, Harilaos J.</au><au>Bacalis, Naoum C.</au><au>Xanthakis, John P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic Processes at the Carbon-Covered (100) Collector Tungsten Surface</atitle><jtitle>Micromachines (Basel)</jtitle><date>2022-05-31</date><risdate>2022</risdate><volume>13</volume><issue>6</issue><spage>888</spage><pages>888-</pages><issn>2072-666X</issn><eissn>2072-666X</eissn><abstract>We have performed density functional VASP calculations of a pure and of a carbon-covered (100) tungsten surface under the presence of an electric field E directed away from the surface. Our aim is to answer the question of an increased penetrability of electrons at the collector side of a nanometric tunnel diode when covered by carbon atoms, a purely quantum mechanical effect related to the value of the workfunction Φ. To obtain Φ at a non-zero electric field we have extrapolated back to the electrical surface the straight line representing the linear increase in the potential energy with distance outside the metal-vacuum interface. We have found that under the presence of E the workfunction Φ = Evac − EF of the (100) pure tungsten surface has a minor dependence on E. However, the carbon-covered tungsten (100) surface workfunction Φ(C − W) has a stronger E dependence. Φ(C − W) decreases continuously with the electric field. This decrease is ΔΦ = 0.08 eV when E = 1 V/nm. This ΔΦ is explained by our calculated changes with electric field of the electronic density of both pure and carbon-covered tungsten. The observed phenomena may be relevant to other surfaces of carbon-covered tungsten and may explain the reported collector dependence of current in Scanning Field Emission Microscopy.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35744502</pmid><doi>10.3390/mi13060888</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-666X |
ispartof | Micromachines (Basel), 2022-05, Vol.13 (6), p.888 |
issn | 2072-666X 2072-666X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_af6a6b536fad49a1b76022316aad3a26 |
source | PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Boundary conditions Carbon carbon-covered tungsten surface Density Electric fields Experiments Field emission microscopy Mathematical analysis Potential energy Quantum mechanics Scanning field emission microscopy scanning microscopy Straight lines Tungsten tunnel diode Tunnel diodes VASP calculation workfunction |
title | Electronic Processes at the Carbon-Covered (100) Collector Tungsten Surface |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A20%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20Processes%20at%20the%20Carbon-Covered%20(100)%20Collector%20Tungsten%20Surface&rft.jtitle=Micromachines%20(Basel)&rft.au=Gotsis,%20Harilaos%20J.&rft.date=2022-05-31&rft.volume=13&rft.issue=6&rft.spage=888&rft.pages=888-&rft.issn=2072-666X&rft.eissn=2072-666X&rft_id=info:doi/10.3390/mi13060888&rft_dat=%3Cgale_doaj_%3EA722102914%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-11b70f4a7d99694ce81685bb840e55e6d3ce39bc2736bd43365602503e68faee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2679775433&rft_id=info:pmid/35744502&rft_galeid=A722102914&rfr_iscdi=true |