Loading…

Fermionic dark matter-photon quantum interaction: A mechanism for darkness

Mass dimension one fermionic fields are prime candidates to describe dark matter, due to their intrinsic neutral nature, as they are constructed as eigenstates of the charge conjugation operator with dual helicity. To formulate the meaning of the darkness, the fermion-photon coupling is scrutinized...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear physics. B 2023-07, Vol.992, p.116227, Article 116227
Main Authors: de Gracia, G.B., Nogueira, A.A., da Rocha, R.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3457-e8563ab44ba287b921a7c8f6e35a3a6180e4f6c368d3363ea5a861e2d9498963
cites cdi_FETCH-LOGICAL-c3457-e8563ab44ba287b921a7c8f6e35a3a6180e4f6c368d3363ea5a861e2d9498963
container_end_page
container_issue
container_start_page 116227
container_title Nuclear physics. B
container_volume 992
creator de Gracia, G.B.
Nogueira, A.A.
da Rocha, R.
description Mass dimension one fermionic fields are prime candidates to describe dark matter, due to their intrinsic neutral nature, as they are constructed as eigenstates of the charge conjugation operator with dual helicity. To formulate the meaning of the darkness, the fermion-photon coupling is scrutinized with a Pauli-like interaction, and the path integral is then formulated from the phase space constraint structure. Ward–Takahashi-like identities and Schwinger–Dyson equations, together with renormalizability, are employed to investigate a phenomenological mechanism to avoid external light signals. Accordingly, the non-polarized pair annihilation and Compton-like processes are shown to vanish at the limit of small scattering angles even if considering 1-loop radiative corrections, reinforcing the dark matter interpretation. However, dark matter interactions with nucleons are still possible. Motivated by recent nucleon-recoil experiments to detect dark matter, we furnish a consistent theoretical setup to describe interaction with the photon compatible with the prevalence of darkness.
doi_str_mv 10.1016/j.nuclphysb.2023.116227
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_af8bd53a6fa746b3909dc6f9b97ed40f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0550321323001566</els_id><doaj_id>oai_doaj_org_article_af8bd53a6fa746b3909dc6f9b97ed40f</doaj_id><sourcerecordid>S0550321323001566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3457-e8563ab44ba287b921a7c8f6e35a3a6180e4f6c368d3363ea5a861e2d9498963</originalsourceid><addsrcrecordid>eNqFkM9OwzAMhyMEEmPwDPQFWvKnTRNu08RgaBKX3SM3dVjK2o6kQ9rb021oV3yxZPn3yf4IeWQ0Y5TJpybr9na72xxilXHKRcaY5Ly8IhOmSpGyQvJrMqFFQVPBmbgldzE2dCwp1IS8LzC0vu-8TWoIX0kLw4Ah3W36oe-S7z10w75NfDcOwQ7j4nMyS1q0G-h8bBPXh1OuwxjvyY2DbcSHvz4l68XLev6Wrj5el_PZKrUiL8oUVSEFVHleAVdlpTmD0ionURQgQDJFMXfSCqlqIaRAKEBJhrzWuVZaiilZnrF1D43ZBd9COJgevDkN-vBpIAzebtGAU1VdjFAHZS4roamurXS60iXWOXUjqzyzbOhjDOguPEbN0a5pzMWuOdo1Z7tjcnZO4vjpj8dgovXYWax9QDuMt_h_Gb9xo4gy</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fermionic dark matter-photon quantum interaction: A mechanism for darkness</title><source>ScienceDirect Freedom Collection</source><source>ScienceDirect - Connect here FIRST to enable access</source><creator>de Gracia, G.B. ; Nogueira, A.A. ; da Rocha, R.</creator><creatorcontrib>de Gracia, G.B. ; Nogueira, A.A. ; da Rocha, R.</creatorcontrib><description>Mass dimension one fermionic fields are prime candidates to describe dark matter, due to their intrinsic neutral nature, as they are constructed as eigenstates of the charge conjugation operator with dual helicity. To formulate the meaning of the darkness, the fermion-photon coupling is scrutinized with a Pauli-like interaction, and the path integral is then formulated from the phase space constraint structure. Ward–Takahashi-like identities and Schwinger–Dyson equations, together with renormalizability, are employed to investigate a phenomenological mechanism to avoid external light signals. Accordingly, the non-polarized pair annihilation and Compton-like processes are shown to vanish at the limit of small scattering angles even if considering 1-loop radiative corrections, reinforcing the dark matter interpretation. However, dark matter interactions with nucleons are still possible. Motivated by recent nucleon-recoil experiments to detect dark matter, we furnish a consistent theoretical setup to describe interaction with the photon compatible with the prevalence of darkness.</description><identifier>ISSN: 0550-3213</identifier><identifier>EISSN: 1873-1562</identifier><identifier>DOI: 10.1016/j.nuclphysb.2023.116227</identifier><language>eng</language><publisher>Elsevier B.V</publisher><ispartof>Nuclear physics. B, 2023-07, Vol.992, p.116227, Article 116227</ispartof><rights>2023 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3457-e8563ab44ba287b921a7c8f6e35a3a6180e4f6c368d3363ea5a861e2d9498963</citedby><cites>FETCH-LOGICAL-c3457-e8563ab44ba287b921a7c8f6e35a3a6180e4f6c368d3363ea5a861e2d9498963</cites><orcidid>0000-0002-1827-1031</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0550321323001566$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3536,27905,27906,45761</link.rule.ids></links><search><creatorcontrib>de Gracia, G.B.</creatorcontrib><creatorcontrib>Nogueira, A.A.</creatorcontrib><creatorcontrib>da Rocha, R.</creatorcontrib><title>Fermionic dark matter-photon quantum interaction: A mechanism for darkness</title><title>Nuclear physics. B</title><description>Mass dimension one fermionic fields are prime candidates to describe dark matter, due to their intrinsic neutral nature, as they are constructed as eigenstates of the charge conjugation operator with dual helicity. To formulate the meaning of the darkness, the fermion-photon coupling is scrutinized with a Pauli-like interaction, and the path integral is then formulated from the phase space constraint structure. Ward–Takahashi-like identities and Schwinger–Dyson equations, together with renormalizability, are employed to investigate a phenomenological mechanism to avoid external light signals. Accordingly, the non-polarized pair annihilation and Compton-like processes are shown to vanish at the limit of small scattering angles even if considering 1-loop radiative corrections, reinforcing the dark matter interpretation. However, dark matter interactions with nucleons are still possible. Motivated by recent nucleon-recoil experiments to detect dark matter, we furnish a consistent theoretical setup to describe interaction with the photon compatible with the prevalence of darkness.</description><issn>0550-3213</issn><issn>1873-1562</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkM9OwzAMhyMEEmPwDPQFWvKnTRNu08RgaBKX3SM3dVjK2o6kQ9rb021oV3yxZPn3yf4IeWQ0Y5TJpybr9na72xxilXHKRcaY5Ly8IhOmSpGyQvJrMqFFQVPBmbgldzE2dCwp1IS8LzC0vu-8TWoIX0kLw4Ah3W36oe-S7z10w75NfDcOwQ7j4nMyS1q0G-h8bBPXh1OuwxjvyY2DbcSHvz4l68XLev6Wrj5el_PZKrUiL8oUVSEFVHleAVdlpTmD0ionURQgQDJFMXfSCqlqIaRAKEBJhrzWuVZaiilZnrF1D43ZBd9COJgevDkN-vBpIAzebtGAU1VdjFAHZS4roamurXS60iXWOXUjqzyzbOhjDOguPEbN0a5pzMWuOdo1Z7tjcnZO4vjpj8dgovXYWax9QDuMt_h_Gb9xo4gy</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>de Gracia, G.B.</creator><creator>Nogueira, A.A.</creator><creator>da Rocha, R.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1827-1031</orcidid></search><sort><creationdate>202307</creationdate><title>Fermionic dark matter-photon quantum interaction: A mechanism for darkness</title><author>de Gracia, G.B. ; Nogueira, A.A. ; da Rocha, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3457-e8563ab44ba287b921a7c8f6e35a3a6180e4f6c368d3363ea5a861e2d9498963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Gracia, G.B.</creatorcontrib><creatorcontrib>Nogueira, A.A.</creatorcontrib><creatorcontrib>da Rocha, R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Nuclear physics. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Gracia, G.B.</au><au>Nogueira, A.A.</au><au>da Rocha, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fermionic dark matter-photon quantum interaction: A mechanism for darkness</atitle><jtitle>Nuclear physics. B</jtitle><date>2023-07</date><risdate>2023</risdate><volume>992</volume><spage>116227</spage><pages>116227-</pages><artnum>116227</artnum><issn>0550-3213</issn><eissn>1873-1562</eissn><abstract>Mass dimension one fermionic fields are prime candidates to describe dark matter, due to their intrinsic neutral nature, as they are constructed as eigenstates of the charge conjugation operator with dual helicity. To formulate the meaning of the darkness, the fermion-photon coupling is scrutinized with a Pauli-like interaction, and the path integral is then formulated from the phase space constraint structure. Ward–Takahashi-like identities and Schwinger–Dyson equations, together with renormalizability, are employed to investigate a phenomenological mechanism to avoid external light signals. Accordingly, the non-polarized pair annihilation and Compton-like processes are shown to vanish at the limit of small scattering angles even if considering 1-loop radiative corrections, reinforcing the dark matter interpretation. However, dark matter interactions with nucleons are still possible. Motivated by recent nucleon-recoil experiments to detect dark matter, we furnish a consistent theoretical setup to describe interaction with the photon compatible with the prevalence of darkness.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.nuclphysb.2023.116227</doi><orcidid>https://orcid.org/0000-0002-1827-1031</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0550-3213
ispartof Nuclear physics. B, 2023-07, Vol.992, p.116227, Article 116227
issn 0550-3213
1873-1562
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_af8bd53a6fa746b3909dc6f9b97ed40f
source ScienceDirect Freedom Collection; ScienceDirect - Connect here FIRST to enable access
title Fermionic dark matter-photon quantum interaction: A mechanism for darkness
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A38%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fermionic%20dark%20matter-photon%20quantum%20interaction:%20A%20mechanism%20for%20darkness&rft.jtitle=Nuclear%20physics.%20B&rft.au=de%20Gracia,%20G.B.&rft.date=2023-07&rft.volume=992&rft.spage=116227&rft.pages=116227-&rft.artnum=116227&rft.issn=0550-3213&rft.eissn=1873-1562&rft_id=info:doi/10.1016/j.nuclphysb.2023.116227&rft_dat=%3Celsevier_doaj_%3ES0550321323001566%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3457-e8563ab44ba287b921a7c8f6e35a3a6180e4f6c368d3363ea5a861e2d9498963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true