Loading…
On Consistency of Cross-Approximate Entropy in Cardiovascular and Artificial Environments
Cross-approximate entropy (XApEn) quantifies the mutual orderliness of simultaneously recorded time series. Despite being derived from the firmly established solitary entropies, it has never reached their reputation and deployment. The aim of this study is to identify the problems that preclude wide...
Saved in:
Published in: | Complexity (New York, N.Y.) N.Y.), 2017-01, Vol.2017 (2017), p.1-15 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c465t-4b9db99d9a3dbc78380fa2094575db794b67981e10e58a8ad5384c1f2ad23c1d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c465t-4b9db99d9a3dbc78380fa2094575db794b67981e10e58a8ad5384c1f2ad23c1d3 |
container_end_page | 15 |
container_issue | 2017 |
container_start_page | 1 |
container_title | Complexity (New York, N.Y.) |
container_volume | 2017 |
creator | Japundzic-Zigon, Nina Milovanovic, Branislav Sarenac, Olivera Skoric, Tamara Bajic, Dragana |
description | Cross-approximate entropy (XApEn) quantifies the mutual orderliness of simultaneously recorded time series. Despite being derived from the firmly established solitary entropies, it has never reached their reputation and deployment. The aim of this study is to identify the problems that preclude wider XApEn implementation and to develop a set of solutions. Exact expressions for XApEn and its constitutive parts are derived and compared to values estimated from artificial data. This comparison revealed vast regions within the parameter space that do not guarantee reliable probability estimation, making XApEn estimates inconsistent. A simple correction to one of the XApEn procedural steps is proposed. Three sets of formulae for joint parameter selection are derived. The first one is intended to maximize threshold profile. The remaining ones minimize XApEn instability according to the strong and weak criteria. The derived expressions are verified using cardiovascular signals recorded from rats (long signals) and healthy volunteers (short clinical signals), proposing a change of traditional parameter guidelines. |
doi_str_mv | 10.1155/2017/8365685 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_af96224a95794c2188854f8fdfb1b9e3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A547622344</galeid><doaj_id>oai_doaj_org_article_af96224a95794c2188854f8fdfb1b9e3</doaj_id><sourcerecordid>A547622344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-4b9db99d9a3dbc78380fa2094575db794b67981e10e58a8ad5384c1f2ad23c1d3</originalsourceid><addsrcrecordid>eNqFkT1vFDEQhlcIJEKgo0YrUcIm_lzb5ekUSKRIaaCgsmb9EXy6sw97L-H-PXPZCErkwtbomcevx133npILSqW8ZISqS81HOWr5ojujxJiBSDa-PJ3VODCl1evuTWsbQogZuTrrftzlfl1yS20O2R37Evt1La0Nq_2-lt9pB3Por_Jcy_7YJ2Sh-lQeoLnDFmoP2ferOqeYXIItgg-plrwLeW5vu1cRti28e97Pu-9frr6tr4fbu68369Xt4MQo50FMxk_GeAPcT05prkkERoyQSvpJGTGNymgaKAlSgwYvuRaORgaecUc9P-9uFq8vsLH7ipHr0RZI9qlQ6r0FTOi2wUI0I2MCjESvY1RrLUXU0ceJTiZwdH1cXPj2X4fQZrsph5oxvsXZEq2oNBqpi4W6B5SmHMtcweHyYZdcySEmrK-kUHgbFwIbPi8N7jTaGuLfmJTY08-d7Mo-_xzinxb8Z8oeHtP_6A8LHZAJEf7RVHDJBP8DQq-haA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010871598</pqid></control><display><type>article</type><title>On Consistency of Cross-Approximate Entropy in Cardiovascular and Artificial Environments</title><source>Wiley Online Library Open Access</source><creator>Japundzic-Zigon, Nina ; Milovanovic, Branislav ; Sarenac, Olivera ; Skoric, Tamara ; Bajic, Dragana</creator><contributor>Obradović, Zoran ; Zoran Obradović</contributor><creatorcontrib>Japundzic-Zigon, Nina ; Milovanovic, Branislav ; Sarenac, Olivera ; Skoric, Tamara ; Bajic, Dragana ; Obradović, Zoran ; Zoran Obradović</creatorcontrib><description>Cross-approximate entropy (XApEn) quantifies the mutual orderliness of simultaneously recorded time series. Despite being derived from the firmly established solitary entropies, it has never reached their reputation and deployment. The aim of this study is to identify the problems that preclude wider XApEn implementation and to develop a set of solutions. Exact expressions for XApEn and its constitutive parts are derived and compared to values estimated from artificial data. This comparison revealed vast regions within the parameter space that do not guarantee reliable probability estimation, making XApEn estimates inconsistent. A simple correction to one of the XApEn procedural steps is proposed. Three sets of formulae for joint parameter selection are derived. The first one is intended to maximize threshold profile. The remaining ones minimize XApEn instability according to the strong and weak criteria. The derived expressions are verified using cardiovascular signals recorded from rats (long signals) and healthy volunteers (short clinical signals), proposing a change of traditional parameter guidelines.</description><identifier>ISSN: 1076-2787</identifier><identifier>EISSN: 1099-0526</identifier><identifier>DOI: 10.1155/2017/8365685</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Analysis ; Artificial environments ; Biomedical engineering ; Diabetes ; Electrocardiography ; Entropy ; Entropy (Information theory) ; Hypertension ; Laboratory animals ; Males ; Medical research ; Medicine ; Methods ; Parameters ; Physiology ; Rats ; Rodents ; Stability ; Stability criteria ; Studies ; Time series</subject><ispartof>Complexity (New York, N.Y.), 2017-01, Vol.2017 (2017), p.1-15</ispartof><rights>Copyright © 2017 Tamara Skoric et al.</rights><rights>COPYRIGHT 2017 John Wiley & Sons, Inc.</rights><rights>Copyright © 2017 Tamara Skoric et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-4b9db99d9a3dbc78380fa2094575db794b67981e10e58a8ad5384c1f2ad23c1d3</citedby><cites>FETCH-LOGICAL-c465t-4b9db99d9a3dbc78380fa2094575db794b67981e10e58a8ad5384c1f2ad23c1d3</cites><orcidid>0000-0002-4662-7939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Obradović, Zoran</contributor><contributor>Zoran Obradović</contributor><creatorcontrib>Japundzic-Zigon, Nina</creatorcontrib><creatorcontrib>Milovanovic, Branislav</creatorcontrib><creatorcontrib>Sarenac, Olivera</creatorcontrib><creatorcontrib>Skoric, Tamara</creatorcontrib><creatorcontrib>Bajic, Dragana</creatorcontrib><title>On Consistency of Cross-Approximate Entropy in Cardiovascular and Artificial Environments</title><title>Complexity (New York, N.Y.)</title><description>Cross-approximate entropy (XApEn) quantifies the mutual orderliness of simultaneously recorded time series. Despite being derived from the firmly established solitary entropies, it has never reached their reputation and deployment. The aim of this study is to identify the problems that preclude wider XApEn implementation and to develop a set of solutions. Exact expressions for XApEn and its constitutive parts are derived and compared to values estimated from artificial data. This comparison revealed vast regions within the parameter space that do not guarantee reliable probability estimation, making XApEn estimates inconsistent. A simple correction to one of the XApEn procedural steps is proposed. Three sets of formulae for joint parameter selection are derived. The first one is intended to maximize threshold profile. The remaining ones minimize XApEn instability according to the strong and weak criteria. The derived expressions are verified using cardiovascular signals recorded from rats (long signals) and healthy volunteers (short clinical signals), proposing a change of traditional parameter guidelines.</description><subject>Analysis</subject><subject>Artificial environments</subject><subject>Biomedical engineering</subject><subject>Diabetes</subject><subject>Electrocardiography</subject><subject>Entropy</subject><subject>Entropy (Information theory)</subject><subject>Hypertension</subject><subject>Laboratory animals</subject><subject>Males</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Methods</subject><subject>Parameters</subject><subject>Physiology</subject><subject>Rats</subject><subject>Rodents</subject><subject>Stability</subject><subject>Stability criteria</subject><subject>Studies</subject><subject>Time series</subject><issn>1076-2787</issn><issn>1099-0526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkT1vFDEQhlcIJEKgo0YrUcIm_lzb5ekUSKRIaaCgsmb9EXy6sw97L-H-PXPZCErkwtbomcevx133npILSqW8ZISqS81HOWr5ojujxJiBSDa-PJ3VODCl1evuTWsbQogZuTrrftzlfl1yS20O2R37Evt1La0Nq_2-lt9pB3Por_Jcy_7YJ2Sh-lQeoLnDFmoP2ferOqeYXIItgg-plrwLeW5vu1cRti28e97Pu-9frr6tr4fbu68369Xt4MQo50FMxk_GeAPcT05prkkERoyQSvpJGTGNymgaKAlSgwYvuRaORgaecUc9P-9uFq8vsLH7ipHr0RZI9qlQ6r0FTOi2wUI0I2MCjESvY1RrLUXU0ceJTiZwdH1cXPj2X4fQZrsph5oxvsXZEq2oNBqpi4W6B5SmHMtcweHyYZdcySEmrK-kUHgbFwIbPi8N7jTaGuLfmJTY08-d7Mo-_xzinxb8Z8oeHtP_6A8LHZAJEf7RVHDJBP8DQq-haA</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Japundzic-Zigon, Nina</creator><creator>Milovanovic, Branislav</creator><creator>Sarenac, Olivera</creator><creator>Skoric, Tamara</creator><creator>Bajic, Dragana</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><general>Hindawi-Wiley</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>AHMDM</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4662-7939</orcidid></search><sort><creationdate>20170101</creationdate><title>On Consistency of Cross-Approximate Entropy in Cardiovascular and Artificial Environments</title><author>Japundzic-Zigon, Nina ; Milovanovic, Branislav ; Sarenac, Olivera ; Skoric, Tamara ; Bajic, Dragana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-4b9db99d9a3dbc78380fa2094575db794b67981e10e58a8ad5384c1f2ad23c1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Artificial environments</topic><topic>Biomedical engineering</topic><topic>Diabetes</topic><topic>Electrocardiography</topic><topic>Entropy</topic><topic>Entropy (Information theory)</topic><topic>Hypertension</topic><topic>Laboratory animals</topic><topic>Males</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Methods</topic><topic>Parameters</topic><topic>Physiology</topic><topic>Rats</topic><topic>Rodents</topic><topic>Stability</topic><topic>Stability criteria</topic><topic>Studies</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Japundzic-Zigon, Nina</creatorcontrib><creatorcontrib>Milovanovic, Branislav</creatorcontrib><creatorcontrib>Sarenac, Olivera</creatorcontrib><creatorcontrib>Skoric, Tamara</creatorcontrib><creatorcontrib>Bajic, Dragana</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>قاعدة العلوم الإنسانية - e-Marefa Humanities</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Complexity (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Japundzic-Zigon, Nina</au><au>Milovanovic, Branislav</au><au>Sarenac, Olivera</au><au>Skoric, Tamara</au><au>Bajic, Dragana</au><au>Obradović, Zoran</au><au>Zoran Obradović</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Consistency of Cross-Approximate Entropy in Cardiovascular and Artificial Environments</atitle><jtitle>Complexity (New York, N.Y.)</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1076-2787</issn><eissn>1099-0526</eissn><abstract>Cross-approximate entropy (XApEn) quantifies the mutual orderliness of simultaneously recorded time series. Despite being derived from the firmly established solitary entropies, it has never reached their reputation and deployment. The aim of this study is to identify the problems that preclude wider XApEn implementation and to develop a set of solutions. Exact expressions for XApEn and its constitutive parts are derived and compared to values estimated from artificial data. This comparison revealed vast regions within the parameter space that do not guarantee reliable probability estimation, making XApEn estimates inconsistent. A simple correction to one of the XApEn procedural steps is proposed. Three sets of formulae for joint parameter selection are derived. The first one is intended to maximize threshold profile. The remaining ones minimize XApEn instability according to the strong and weak criteria. The derived expressions are verified using cardiovascular signals recorded from rats (long signals) and healthy volunteers (short clinical signals), proposing a change of traditional parameter guidelines.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2017/8365685</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4662-7939</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-2787 |
ispartof | Complexity (New York, N.Y.), 2017-01, Vol.2017 (2017), p.1-15 |
issn | 1076-2787 1099-0526 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_af96224a95794c2188854f8fdfb1b9e3 |
source | Wiley Online Library Open Access |
subjects | Analysis Artificial environments Biomedical engineering Diabetes Electrocardiography Entropy Entropy (Information theory) Hypertension Laboratory animals Males Medical research Medicine Methods Parameters Physiology Rats Rodents Stability Stability criteria Studies Time series |
title | On Consistency of Cross-Approximate Entropy in Cardiovascular and Artificial Environments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A56%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Consistency%20of%20Cross-Approximate%20Entropy%20in%20Cardiovascular%20and%20Artificial%20Environments&rft.jtitle=Complexity%20(New%20York,%20N.Y.)&rft.au=Japundzic-Zigon,%20Nina&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1076-2787&rft.eissn=1099-0526&rft_id=info:doi/10.1155/2017/8365685&rft_dat=%3Cgale_doaj_%3EA547622344%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-4b9db99d9a3dbc78380fa2094575db794b67981e10e58a8ad5384c1f2ad23c1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2010871598&rft_id=info:pmid/&rft_galeid=A547622344&rfr_iscdi=true |