Loading…

On Consistency of Cross-Approximate Entropy in Cardiovascular and Artificial Environments

Cross-approximate entropy (XApEn) quantifies the mutual orderliness of simultaneously recorded time series. Despite being derived from the firmly established solitary entropies, it has never reached their reputation and deployment. The aim of this study is to identify the problems that preclude wide...

Full description

Saved in:
Bibliographic Details
Published in:Complexity (New York, N.Y.) N.Y.), 2017-01, Vol.2017 (2017), p.1-15
Main Authors: Japundzic-Zigon, Nina, Milovanovic, Branislav, Sarenac, Olivera, Skoric, Tamara, Bajic, Dragana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-4b9db99d9a3dbc78380fa2094575db794b67981e10e58a8ad5384c1f2ad23c1d3
cites cdi_FETCH-LOGICAL-c465t-4b9db99d9a3dbc78380fa2094575db794b67981e10e58a8ad5384c1f2ad23c1d3
container_end_page 15
container_issue 2017
container_start_page 1
container_title Complexity (New York, N.Y.)
container_volume 2017
creator Japundzic-Zigon, Nina
Milovanovic, Branislav
Sarenac, Olivera
Skoric, Tamara
Bajic, Dragana
description Cross-approximate entropy (XApEn) quantifies the mutual orderliness of simultaneously recorded time series. Despite being derived from the firmly established solitary entropies, it has never reached their reputation and deployment. The aim of this study is to identify the problems that preclude wider XApEn implementation and to develop a set of solutions. Exact expressions for XApEn and its constitutive parts are derived and compared to values estimated from artificial data. This comparison revealed vast regions within the parameter space that do not guarantee reliable probability estimation, making XApEn estimates inconsistent. A simple correction to one of the XApEn procedural steps is proposed. Three sets of formulae for joint parameter selection are derived. The first one is intended to maximize threshold profile. The remaining ones minimize XApEn instability according to the strong and weak criteria. The derived expressions are verified using cardiovascular signals recorded from rats (long signals) and healthy volunteers (short clinical signals), proposing a change of traditional parameter guidelines.
doi_str_mv 10.1155/2017/8365685
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_af96224a95794c2188854f8fdfb1b9e3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A547622344</galeid><doaj_id>oai_doaj_org_article_af96224a95794c2188854f8fdfb1b9e3</doaj_id><sourcerecordid>A547622344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-4b9db99d9a3dbc78380fa2094575db794b67981e10e58a8ad5384c1f2ad23c1d3</originalsourceid><addsrcrecordid>eNqFkT1vFDEQhlcIJEKgo0YrUcIm_lzb5ekUSKRIaaCgsmb9EXy6sw97L-H-PXPZCErkwtbomcevx133npILSqW8ZISqS81HOWr5ojujxJiBSDa-PJ3VODCl1evuTWsbQogZuTrrftzlfl1yS20O2R37Evt1La0Nq_2-lt9pB3Por_Jcy_7YJ2Sh-lQeoLnDFmoP2ferOqeYXIItgg-plrwLeW5vu1cRti28e97Pu-9frr6tr4fbu68369Xt4MQo50FMxk_GeAPcT05prkkERoyQSvpJGTGNymgaKAlSgwYvuRaORgaecUc9P-9uFq8vsLH7ipHr0RZI9qlQ6r0FTOi2wUI0I2MCjESvY1RrLUXU0ceJTiZwdH1cXPj2X4fQZrsph5oxvsXZEq2oNBqpi4W6B5SmHMtcweHyYZdcySEmrK-kUHgbFwIbPi8N7jTaGuLfmJTY08-d7Mo-_xzinxb8Z8oeHtP_6A8LHZAJEf7RVHDJBP8DQq-haA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010871598</pqid></control><display><type>article</type><title>On Consistency of Cross-Approximate Entropy in Cardiovascular and Artificial Environments</title><source>Wiley Online Library Open Access</source><creator>Japundzic-Zigon, Nina ; Milovanovic, Branislav ; Sarenac, Olivera ; Skoric, Tamara ; Bajic, Dragana</creator><contributor>Obradović, Zoran ; Zoran Obradović</contributor><creatorcontrib>Japundzic-Zigon, Nina ; Milovanovic, Branislav ; Sarenac, Olivera ; Skoric, Tamara ; Bajic, Dragana ; Obradović, Zoran ; Zoran Obradović</creatorcontrib><description>Cross-approximate entropy (XApEn) quantifies the mutual orderliness of simultaneously recorded time series. Despite being derived from the firmly established solitary entropies, it has never reached their reputation and deployment. The aim of this study is to identify the problems that preclude wider XApEn implementation and to develop a set of solutions. Exact expressions for XApEn and its constitutive parts are derived and compared to values estimated from artificial data. This comparison revealed vast regions within the parameter space that do not guarantee reliable probability estimation, making XApEn estimates inconsistent. A simple correction to one of the XApEn procedural steps is proposed. Three sets of formulae for joint parameter selection are derived. The first one is intended to maximize threshold profile. The remaining ones minimize XApEn instability according to the strong and weak criteria. The derived expressions are verified using cardiovascular signals recorded from rats (long signals) and healthy volunteers (short clinical signals), proposing a change of traditional parameter guidelines.</description><identifier>ISSN: 1076-2787</identifier><identifier>EISSN: 1099-0526</identifier><identifier>DOI: 10.1155/2017/8365685</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Analysis ; Artificial environments ; Biomedical engineering ; Diabetes ; Electrocardiography ; Entropy ; Entropy (Information theory) ; Hypertension ; Laboratory animals ; Males ; Medical research ; Medicine ; Methods ; Parameters ; Physiology ; Rats ; Rodents ; Stability ; Stability criteria ; Studies ; Time series</subject><ispartof>Complexity (New York, N.Y.), 2017-01, Vol.2017 (2017), p.1-15</ispartof><rights>Copyright © 2017 Tamara Skoric et al.</rights><rights>COPYRIGHT 2017 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2017 Tamara Skoric et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-4b9db99d9a3dbc78380fa2094575db794b67981e10e58a8ad5384c1f2ad23c1d3</citedby><cites>FETCH-LOGICAL-c465t-4b9db99d9a3dbc78380fa2094575db794b67981e10e58a8ad5384c1f2ad23c1d3</cites><orcidid>0000-0002-4662-7939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Obradović, Zoran</contributor><contributor>Zoran Obradović</contributor><creatorcontrib>Japundzic-Zigon, Nina</creatorcontrib><creatorcontrib>Milovanovic, Branislav</creatorcontrib><creatorcontrib>Sarenac, Olivera</creatorcontrib><creatorcontrib>Skoric, Tamara</creatorcontrib><creatorcontrib>Bajic, Dragana</creatorcontrib><title>On Consistency of Cross-Approximate Entropy in Cardiovascular and Artificial Environments</title><title>Complexity (New York, N.Y.)</title><description>Cross-approximate entropy (XApEn) quantifies the mutual orderliness of simultaneously recorded time series. Despite being derived from the firmly established solitary entropies, it has never reached their reputation and deployment. The aim of this study is to identify the problems that preclude wider XApEn implementation and to develop a set of solutions. Exact expressions for XApEn and its constitutive parts are derived and compared to values estimated from artificial data. This comparison revealed vast regions within the parameter space that do not guarantee reliable probability estimation, making XApEn estimates inconsistent. A simple correction to one of the XApEn procedural steps is proposed. Three sets of formulae for joint parameter selection are derived. The first one is intended to maximize threshold profile. The remaining ones minimize XApEn instability according to the strong and weak criteria. The derived expressions are verified using cardiovascular signals recorded from rats (long signals) and healthy volunteers (short clinical signals), proposing a change of traditional parameter guidelines.</description><subject>Analysis</subject><subject>Artificial environments</subject><subject>Biomedical engineering</subject><subject>Diabetes</subject><subject>Electrocardiography</subject><subject>Entropy</subject><subject>Entropy (Information theory)</subject><subject>Hypertension</subject><subject>Laboratory animals</subject><subject>Males</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Methods</subject><subject>Parameters</subject><subject>Physiology</subject><subject>Rats</subject><subject>Rodents</subject><subject>Stability</subject><subject>Stability criteria</subject><subject>Studies</subject><subject>Time series</subject><issn>1076-2787</issn><issn>1099-0526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkT1vFDEQhlcIJEKgo0YrUcIm_lzb5ekUSKRIaaCgsmb9EXy6sw97L-H-PXPZCErkwtbomcevx133npILSqW8ZISqS81HOWr5ojujxJiBSDa-PJ3VODCl1evuTWsbQogZuTrrftzlfl1yS20O2R37Evt1La0Nq_2-lt9pB3Por_Jcy_7YJ2Sh-lQeoLnDFmoP2ferOqeYXIItgg-plrwLeW5vu1cRti28e97Pu-9frr6tr4fbu68369Xt4MQo50FMxk_GeAPcT05prkkERoyQSvpJGTGNymgaKAlSgwYvuRaORgaecUc9P-9uFq8vsLH7ipHr0RZI9qlQ6r0FTOi2wUI0I2MCjESvY1RrLUXU0ceJTiZwdH1cXPj2X4fQZrsph5oxvsXZEq2oNBqpi4W6B5SmHMtcweHyYZdcySEmrK-kUHgbFwIbPi8N7jTaGuLfmJTY08-d7Mo-_xzinxb8Z8oeHtP_6A8LHZAJEf7RVHDJBP8DQq-haA</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Japundzic-Zigon, Nina</creator><creator>Milovanovic, Branislav</creator><creator>Sarenac, Olivera</creator><creator>Skoric, Tamara</creator><creator>Bajic, Dragana</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><general>Hindawi-Wiley</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>AHMDM</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4662-7939</orcidid></search><sort><creationdate>20170101</creationdate><title>On Consistency of Cross-Approximate Entropy in Cardiovascular and Artificial Environments</title><author>Japundzic-Zigon, Nina ; Milovanovic, Branislav ; Sarenac, Olivera ; Skoric, Tamara ; Bajic, Dragana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-4b9db99d9a3dbc78380fa2094575db794b67981e10e58a8ad5384c1f2ad23c1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Artificial environments</topic><topic>Biomedical engineering</topic><topic>Diabetes</topic><topic>Electrocardiography</topic><topic>Entropy</topic><topic>Entropy (Information theory)</topic><topic>Hypertension</topic><topic>Laboratory animals</topic><topic>Males</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Methods</topic><topic>Parameters</topic><topic>Physiology</topic><topic>Rats</topic><topic>Rodents</topic><topic>Stability</topic><topic>Stability criteria</topic><topic>Studies</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Japundzic-Zigon, Nina</creatorcontrib><creatorcontrib>Milovanovic, Branislav</creatorcontrib><creatorcontrib>Sarenac, Olivera</creatorcontrib><creatorcontrib>Skoric, Tamara</creatorcontrib><creatorcontrib>Bajic, Dragana</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>قاعدة العلوم الإنسانية - e-Marefa Humanities</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Complexity (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Japundzic-Zigon, Nina</au><au>Milovanovic, Branislav</au><au>Sarenac, Olivera</au><au>Skoric, Tamara</au><au>Bajic, Dragana</au><au>Obradović, Zoran</au><au>Zoran Obradović</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Consistency of Cross-Approximate Entropy in Cardiovascular and Artificial Environments</atitle><jtitle>Complexity (New York, N.Y.)</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1076-2787</issn><eissn>1099-0526</eissn><abstract>Cross-approximate entropy (XApEn) quantifies the mutual orderliness of simultaneously recorded time series. Despite being derived from the firmly established solitary entropies, it has never reached their reputation and deployment. The aim of this study is to identify the problems that preclude wider XApEn implementation and to develop a set of solutions. Exact expressions for XApEn and its constitutive parts are derived and compared to values estimated from artificial data. This comparison revealed vast regions within the parameter space that do not guarantee reliable probability estimation, making XApEn estimates inconsistent. A simple correction to one of the XApEn procedural steps is proposed. Three sets of formulae for joint parameter selection are derived. The first one is intended to maximize threshold profile. The remaining ones minimize XApEn instability according to the strong and weak criteria. The derived expressions are verified using cardiovascular signals recorded from rats (long signals) and healthy volunteers (short clinical signals), proposing a change of traditional parameter guidelines.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2017/8365685</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4662-7939</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1076-2787
ispartof Complexity (New York, N.Y.), 2017-01, Vol.2017 (2017), p.1-15
issn 1076-2787
1099-0526
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_af96224a95794c2188854f8fdfb1b9e3
source Wiley Online Library Open Access
subjects Analysis
Artificial environments
Biomedical engineering
Diabetes
Electrocardiography
Entropy
Entropy (Information theory)
Hypertension
Laboratory animals
Males
Medical research
Medicine
Methods
Parameters
Physiology
Rats
Rodents
Stability
Stability criteria
Studies
Time series
title On Consistency of Cross-Approximate Entropy in Cardiovascular and Artificial Environments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A56%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Consistency%20of%20Cross-Approximate%20Entropy%20in%20Cardiovascular%20and%20Artificial%20Environments&rft.jtitle=Complexity%20(New%20York,%20N.Y.)&rft.au=Japundzic-Zigon,%20Nina&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1076-2787&rft.eissn=1099-0526&rft_id=info:doi/10.1155/2017/8365685&rft_dat=%3Cgale_doaj_%3EA547622344%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-4b9db99d9a3dbc78380fa2094575db794b67981e10e58a8ad5384c1f2ad23c1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2010871598&rft_id=info:pmid/&rft_galeid=A547622344&rfr_iscdi=true