Loading…

Nimble evolution for pretzel Khovanov polynomials

We conjecture explicit evolution formulas for Khovanov polynomials, which for any particular knot are Laurent polynomials of complex variables q and T , for pretzel knots of genus g in some regions in the space of winding parameters n 0 , ⋯ , n g . Our description is exhaustive for genera 1 and 2. A...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. C, Particles and fields Particles and fields, 2019-10, Vol.79 (10), p.1-13, Article 867
Main Authors: Anokhina, Aleksandra, Morozov, Alexei, Popolitov, Aleksandr
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c555t-749f37ea2745fa211e0bc7b6ec4226a02ef43d0f401556235bd8ff34368d28113
cites cdi_FETCH-LOGICAL-c555t-749f37ea2745fa211e0bc7b6ec4226a02ef43d0f401556235bd8ff34368d28113
container_end_page 13
container_issue 10
container_start_page 1
container_title The European physical journal. C, Particles and fields
container_volume 79
creator Anokhina, Aleksandra
Morozov, Alexei
Popolitov, Aleksandr
description We conjecture explicit evolution formulas for Khovanov polynomials, which for any particular knot are Laurent polynomials of complex variables q and T , for pretzel knots of genus g in some regions in the space of winding parameters n 0 , ⋯ , n g . Our description is exhaustive for genera 1 and 2. As previously observed Anokhina and Morozov (2018), Dunin-Barkowski et al. (2019), evolution at T ≠ - 1 is not fully smooth: it switches abruptly at the boundaries between different regions. We reveal that this happens also at the boundary between thin and thick knots, moreover, the thick-knot domain is further stratified. For thin knots the two eigenvalues 1 and λ = q 2 T , governing the evolution, are the standard T -deformation of the eigenvalues of the R -matrix 1 and - q 2 . However, in thick knots’ regions extra eigenvalues emerge, and they are powers of the “naive” λ , namely, they are equal to λ 2 , ⋯ , λ g . From point of view of frequencies, i.e. logarithms of eigenvalues, this is frequency doubling (more precisely, frequency multiplication) – a phenomenon typical for non-linear dynamics. Hence, our observation can signal a hidden non-linearity of superpolynomial evolution. To give this newly observed evolution a short name, note that when λ is pure phase the contributions of λ 2 , ⋯ , λ g oscillate “faster” than the one of λ . Hence, we call this type of evolution “nimble”.
doi_str_mv 10.1140/epjc/s10052-019-7303-5
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_afaf495ce1a44f14b7d0dbf86f6e45dd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A603543620</galeid><doaj_id>oai_doaj_org_article_afaf495ce1a44f14b7d0dbf86f6e45dd</doaj_id><sourcerecordid>A603543620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-749f37ea2745fa211e0bc7b6ec4226a02ef43d0f401556235bd8ff34368d28113</originalsourceid><addsrcrecordid>eNqFkVtv1DAQhSMEEqXwF1AknpBIO74meVyV24oKpBZ4tRx7vHiVjYOdbFt-Pd6mKton5IexRt85mplTFK8JnBHC4RzHrTlPBEDQCkhb1QxYJZ4UJ4QzXsncfvr45_x58SKlLQBQDs1JQb76XddjifvQz5MPQ-lCLMeI0x_syy-_wl4PYV-Oob8bws7rPr0snrlc8NVDPS1-fPzw_eJzdfnt0_pidVkZIcRU1bx1rEZNay6cpoQgdKbuJBpOqdRA0XFmwXEgQkjKRGcb5xhnsrG0IYSdFuvF1wa9VWP0Ox3vVNBe3TdC3CgdJ296VNppx1thkGjOHeFdbcF2rpFOIhfWZq93i1e6wXHujtze-5-re7d5VqyVrZAZf7PgYwy_Z0yT2oY5DnlbRRnUktB8yEydLdRG5xn84MIUtcnP4s6bMKDzub-SwETeikIWvD0SZGbC22mj55TU-vrqmJULa2JIKaJ7nJmAOsSuDrGrJXaVY1eH2JXIwvph1SwYNhj_zf4f5V_S37Fi</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307612044</pqid></control><display><type>article</type><title>Nimble evolution for pretzel Khovanov polynomials</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Anokhina, Aleksandra ; Morozov, Alexei ; Popolitov, Aleksandr</creator><creatorcontrib>Anokhina, Aleksandra ; Morozov, Alexei ; Popolitov, Aleksandr</creatorcontrib><description>We conjecture explicit evolution formulas for Khovanov polynomials, which for any particular knot are Laurent polynomials of complex variables q and T , for pretzel knots of genus g in some regions in the space of winding parameters n 0 , ⋯ , n g . Our description is exhaustive for genera 1 and 2. As previously observed Anokhina and Morozov (2018), Dunin-Barkowski et al. (2019), evolution at T ≠ - 1 is not fully smooth: it switches abruptly at the boundaries between different regions. We reveal that this happens also at the boundary between thin and thick knots, moreover, the thick-knot domain is further stratified. For thin knots the two eigenvalues 1 and λ = q 2 T , governing the evolution, are the standard T -deformation of the eigenvalues of the R -matrix 1 and - q 2 . However, in thick knots’ regions extra eigenvalues emerge, and they are powers of the “naive” λ , namely, they are equal to λ 2 , ⋯ , λ g . From point of view of frequencies, i.e. logarithms of eigenvalues, this is frequency doubling (more precisely, frequency multiplication) – a phenomenon typical for non-linear dynamics. Hence, our observation can signal a hidden non-linearity of superpolynomial evolution. To give this newly observed evolution a short name, note that when λ is pure phase the contributions of λ 2 , ⋯ , λ g oscillate “faster” than the one of λ . Hence, we call this type of evolution “nimble”.</description><identifier>ISSN: 1434-6044</identifier><identifier>ISSN: 1434-6052</identifier><identifier>EISSN: 1434-6052</identifier><identifier>DOI: 10.1140/epjc/s10052-019-7303-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Astronomy ; Astrophysics and Cosmology ; Complex variables ; Eigenvalues ; Elementary Particles ; Evolution ; Hadrons ; Heavy Ions ; Knots ; Linearity ; Logarithms ; Measurement Science and Instrumentation ; Multiplication ; Nonlinear dynamics ; Nonlinearity ; Nuclear Energy ; Nuclear Physics ; Physics ; Physics and Astronomy ; Polynomials ; Quantum Field Theories ; Quantum Field Theory ; Regular Article - Theoretical Physics ; Second harmonic generation ; Snack foods ; String Theory ; Switches</subject><ispartof>The European physical journal. C, Particles and fields, 2019-10, Vol.79 (10), p.1-13, Article 867</ispartof><rights>The Author(s) 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>The European Physical Journal C is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-749f37ea2745fa211e0bc7b6ec4226a02ef43d0f401556235bd8ff34368d28113</citedby><cites>FETCH-LOGICAL-c555t-749f37ea2745fa211e0bc7b6ec4226a02ef43d0f401556235bd8ff34368d28113</cites><orcidid>0000-0001-8573-991X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2307612044/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2307612044?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-396956$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Anokhina, Aleksandra</creatorcontrib><creatorcontrib>Morozov, Alexei</creatorcontrib><creatorcontrib>Popolitov, Aleksandr</creatorcontrib><title>Nimble evolution for pretzel Khovanov polynomials</title><title>The European physical journal. C, Particles and fields</title><addtitle>Eur. Phys. J. C</addtitle><description>We conjecture explicit evolution formulas for Khovanov polynomials, which for any particular knot are Laurent polynomials of complex variables q and T , for pretzel knots of genus g in some regions in the space of winding parameters n 0 , ⋯ , n g . Our description is exhaustive for genera 1 and 2. As previously observed Anokhina and Morozov (2018), Dunin-Barkowski et al. (2019), evolution at T ≠ - 1 is not fully smooth: it switches abruptly at the boundaries between different regions. We reveal that this happens also at the boundary between thin and thick knots, moreover, the thick-knot domain is further stratified. For thin knots the two eigenvalues 1 and λ = q 2 T , governing the evolution, are the standard T -deformation of the eigenvalues of the R -matrix 1 and - q 2 . However, in thick knots’ regions extra eigenvalues emerge, and they are powers of the “naive” λ , namely, they are equal to λ 2 , ⋯ , λ g . From point of view of frequencies, i.e. logarithms of eigenvalues, this is frequency doubling (more precisely, frequency multiplication) – a phenomenon typical for non-linear dynamics. Hence, our observation can signal a hidden non-linearity of superpolynomial evolution. To give this newly observed evolution a short name, note that when λ is pure phase the contributions of λ 2 , ⋯ , λ g oscillate “faster” than the one of λ . Hence, we call this type of evolution “nimble”.</description><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Complex variables</subject><subject>Eigenvalues</subject><subject>Elementary Particles</subject><subject>Evolution</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Knots</subject><subject>Linearity</subject><subject>Logarithms</subject><subject>Measurement Science and Instrumentation</subject><subject>Multiplication</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><subject>Nuclear Energy</subject><subject>Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polynomials</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Regular Article - Theoretical Physics</subject><subject>Second harmonic generation</subject><subject>Snack foods</subject><subject>String Theory</subject><subject>Switches</subject><issn>1434-6044</issn><issn>1434-6052</issn><issn>1434-6052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkVtv1DAQhSMEEqXwF1AknpBIO74meVyV24oKpBZ4tRx7vHiVjYOdbFt-Pd6mKton5IexRt85mplTFK8JnBHC4RzHrTlPBEDQCkhb1QxYJZ4UJ4QzXsncfvr45_x58SKlLQBQDs1JQb76XddjifvQz5MPQ-lCLMeI0x_syy-_wl4PYV-Oob8bws7rPr0snrlc8NVDPS1-fPzw_eJzdfnt0_pidVkZIcRU1bx1rEZNay6cpoQgdKbuJBpOqdRA0XFmwXEgQkjKRGcb5xhnsrG0IYSdFuvF1wa9VWP0Ox3vVNBe3TdC3CgdJ296VNppx1thkGjOHeFdbcF2rpFOIhfWZq93i1e6wXHujtze-5-re7d5VqyVrZAZf7PgYwy_Z0yT2oY5DnlbRRnUktB8yEydLdRG5xn84MIUtcnP4s6bMKDzub-SwETeikIWvD0SZGbC22mj55TU-vrqmJULa2JIKaJ7nJmAOsSuDrGrJXaVY1eH2JXIwvph1SwYNhj_zf4f5V_S37Fi</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Anokhina, Aleksandra</creator><creator>Morozov, Alexei</creator><creator>Popolitov, Aleksandr</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8573-991X</orcidid></search><sort><creationdate>20191001</creationdate><title>Nimble evolution for pretzel Khovanov polynomials</title><author>Anokhina, Aleksandra ; Morozov, Alexei ; Popolitov, Aleksandr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-749f37ea2745fa211e0bc7b6ec4226a02ef43d0f401556235bd8ff34368d28113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Complex variables</topic><topic>Eigenvalues</topic><topic>Elementary Particles</topic><topic>Evolution</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Knots</topic><topic>Linearity</topic><topic>Logarithms</topic><topic>Measurement Science and Instrumentation</topic><topic>Multiplication</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><topic>Nuclear Energy</topic><topic>Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polynomials</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Regular Article - Theoretical Physics</topic><topic>Second harmonic generation</topic><topic>Snack foods</topic><topic>String Theory</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anokhina, Aleksandra</creatorcontrib><creatorcontrib>Morozov, Alexei</creatorcontrib><creatorcontrib>Popolitov, Aleksandr</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The European physical journal. C, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anokhina, Aleksandra</au><au>Morozov, Alexei</au><au>Popolitov, Aleksandr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nimble evolution for pretzel Khovanov polynomials</atitle><jtitle>The European physical journal. C, Particles and fields</jtitle><stitle>Eur. Phys. J. C</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>79</volume><issue>10</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><artnum>867</artnum><issn>1434-6044</issn><issn>1434-6052</issn><eissn>1434-6052</eissn><abstract>We conjecture explicit evolution formulas for Khovanov polynomials, which for any particular knot are Laurent polynomials of complex variables q and T , for pretzel knots of genus g in some regions in the space of winding parameters n 0 , ⋯ , n g . Our description is exhaustive for genera 1 and 2. As previously observed Anokhina and Morozov (2018), Dunin-Barkowski et al. (2019), evolution at T ≠ - 1 is not fully smooth: it switches abruptly at the boundaries between different regions. We reveal that this happens also at the boundary between thin and thick knots, moreover, the thick-knot domain is further stratified. For thin knots the two eigenvalues 1 and λ = q 2 T , governing the evolution, are the standard T -deformation of the eigenvalues of the R -matrix 1 and - q 2 . However, in thick knots’ regions extra eigenvalues emerge, and they are powers of the “naive” λ , namely, they are equal to λ 2 , ⋯ , λ g . From point of view of frequencies, i.e. logarithms of eigenvalues, this is frequency doubling (more precisely, frequency multiplication) – a phenomenon typical for non-linear dynamics. Hence, our observation can signal a hidden non-linearity of superpolynomial evolution. To give this newly observed evolution a short name, note that when λ is pure phase the contributions of λ 2 , ⋯ , λ g oscillate “faster” than the one of λ . Hence, we call this type of evolution “nimble”.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjc/s10052-019-7303-5</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8573-991X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-6044
ispartof The European physical journal. C, Particles and fields, 2019-10, Vol.79 (10), p.1-13, Article 867
issn 1434-6044
1434-6052
1434-6052
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_afaf495ce1a44f14b7d0dbf86f6e45dd
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Astronomy
Astrophysics and Cosmology
Complex variables
Eigenvalues
Elementary Particles
Evolution
Hadrons
Heavy Ions
Knots
Linearity
Logarithms
Measurement Science and Instrumentation
Multiplication
Nonlinear dynamics
Nonlinearity
Nuclear Energy
Nuclear Physics
Physics
Physics and Astronomy
Polynomials
Quantum Field Theories
Quantum Field Theory
Regular Article - Theoretical Physics
Second harmonic generation
Snack foods
String Theory
Switches
title Nimble evolution for pretzel Khovanov polynomials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nimble%20evolution%20for%20pretzel%20Khovanov%20polynomials&rft.jtitle=The%20European%20physical%20journal.%20C,%20Particles%20and%20fields&rft.au=Anokhina,%20Aleksandra&rft.date=2019-10-01&rft.volume=79&rft.issue=10&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.artnum=867&rft.issn=1434-6044&rft.eissn=1434-6052&rft_id=info:doi/10.1140/epjc/s10052-019-7303-5&rft_dat=%3Cgale_doaj_%3EA603543620%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c555t-749f37ea2745fa211e0bc7b6ec4226a02ef43d0f401556235bd8ff34368d28113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2307612044&rft_id=info:pmid/&rft_galeid=A603543620&rfr_iscdi=true