Loading…
Analytical Solutions of the One-Dimensional Heat Equations Arising in Fractal Transient Conduction with Local Fractional Derivative
The one-dimensional heat equations with the heat generation arising in fractal transient conduction associated with local fractional derivative operators are investigated. Analytical solutions are obtained by using the local fractional Adomian decomposition method via local fractional calculus theor...
Saved in:
Published in: | Abstract and Applied Analysis 2013-01, Vol.2013 (2013), p.307-311-535 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a590t-d02a9198be9c0894cdbde085012983158cb49a11af54ef1cf5e72caa274490de3 |
---|---|
cites | cdi_FETCH-LOGICAL-a590t-d02a9198be9c0894cdbde085012983158cb49a11af54ef1cf5e72caa274490de3 |
container_end_page | 311-535 |
container_issue | 2013 |
container_start_page | 307 |
container_title | Abstract and Applied Analysis |
container_volume | 2013 |
creator | Yang, Ai-Ming Cattani, Carlo Jafari, Hossein Yang, Xiao-Jun |
description | The one-dimensional heat equations with the heat generation arising in fractal transient conduction associated with local fractional derivative operators are investigated. Analytical solutions are obtained by using the local fractional Adomian decomposition method via local fractional calculus theory. The method in general is easy to implement and yields good results. Illustrative examples are included to demonstrate the validity and applicability of the new technique. |
doi_str_mv | 10.1155/2013/462535 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_aff473f5ee5d461fb7dd0fd16bc01384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A426543378</galeid><airiti_id>P20160825001_201312_201609070065_201609070065_307_311_535</airiti_id><doaj_id>oai_doaj_org_article_aff473f5ee5d461fb7dd0fd16bc01384</doaj_id><sourcerecordid>A426543378</sourcerecordid><originalsourceid>FETCH-LOGICAL-a590t-d02a9198be9c0894cdbde085012983158cb49a11af54ef1cf5e72caa274490de3</originalsourceid><addsrcrecordid>eNqFks1r2zAUwM3YYF23084Dw24rbvVpW7eFtF0LgRbWnsWLPhKF1GpluaXn_eN7jkNGT8MHWc8__d6HVRRfKTmlVMozRig_EzWTXL4rjmjdNhURRL3Hd9LKivNGfiw-9f2GEMIbIY6KP7MOtq85GNiWv-N2yCF2fRl9mdeuvOlcdR4eXNdjFIErB7m8eBpgomYp9KFblaErLxOYjMRdAoRdl8t57OxgRrB8CXldLuKYYsdNsnOXwjOant3n4oOHbe--7Nfj4v7y4m5-VS1ufl3PZ4sKpCK5soSBoqpdOmVIq4SxS-uwLUKZajmVrVkKBZSCl8J5arx0DTMADBtVxDp-XFxPXhthox9TeID0qiMEvQvEtNKQcBRbp8F70XA0OGlFTf2ysZZ4S-ulwRG3Al0_J9djihtnshvMNtg30vn9Yh_dLwCgKVdcUsZog4rvB8XT4PqsN3FIOJpeU1kLxqkSI3U6USvAukLnY8YZ4mPdQzCxcz5gfCZYLQX-3xYPnEwHTIp9n5w_FEWJHm-JHm-Jnm4J0j8meh06Cy_hP_C3CXaIOA8HGOsU7Zj6dvoOIYUc_vVzi5aatEwSQndGyvQupEhDSC3fbjhpNKdUjyn_At5U3Is</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1564231947</pqid></control><display><type>article</type><title>Analytical Solutions of the One-Dimensional Heat Equations Arising in Fractal Transient Conduction with Local Fractional Derivative</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Yang, Ai-Ming ; Cattani, Carlo ; Jafari, Hossein ; Yang, Xiao-Jun</creator><contributor>Atangana, Abdon</contributor><creatorcontrib>Yang, Ai-Ming ; Cattani, Carlo ; Jafari, Hossein ; Yang, Xiao-Jun ; Atangana, Abdon</creatorcontrib><description>The one-dimensional heat equations with the heat generation arising in fractal transient conduction associated with local fractional derivative operators are investigated. Analytical solutions are obtained by using the local fractional Adomian decomposition method via local fractional calculus theory. The method in general is easy to implement and yields good results. Illustrative examples are included to demonstrate the validity and applicability of the new technique.</description><identifier>ISSN: 1085-3375</identifier><identifier>EISSN: 1687-0409</identifier><identifier>DOI: 10.1155/2013/462535</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Boundary conditions ; Colleges & universities ; Cybernetics ; Decomposition ; Decomposition (Mathematics) ; Heat equation ; Mathematical research ; Mathematics ; Mechanics ; Partial differential equations ; Science</subject><ispartof>Abstract and Applied Analysis, 2013-01, Vol.2013 (2013), p.307-311-535</ispartof><rights>Copyright © 2013 Ai-Ming Yang et al.</rights><rights>COPYRIGHT 2014 John Wiley & Sons, Inc.</rights><rights>Copyright © 2013 Ai-Ming Yang et al. Ai-Ming Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright 2013 Hindawi Publishing Corporation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a590t-d02a9198be9c0894cdbde085012983158cb49a11af54ef1cf5e72caa274490de3</citedby><cites>FETCH-LOGICAL-a590t-d02a9198be9c0894cdbde085012983158cb49a11af54ef1cf5e72caa274490de3</cites><orcidid>0000-0001-6807-6675</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1564231947/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1564231947?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,25740,27911,27912,36999,44577,74883</link.rule.ids></links><search><contributor>Atangana, Abdon</contributor><creatorcontrib>Yang, Ai-Ming</creatorcontrib><creatorcontrib>Cattani, Carlo</creatorcontrib><creatorcontrib>Jafari, Hossein</creatorcontrib><creatorcontrib>Yang, Xiao-Jun</creatorcontrib><title>Analytical Solutions of the One-Dimensional Heat Equations Arising in Fractal Transient Conduction with Local Fractional Derivative</title><title>Abstract and Applied Analysis</title><description>The one-dimensional heat equations with the heat generation arising in fractal transient conduction associated with local fractional derivative operators are investigated. Analytical solutions are obtained by using the local fractional Adomian decomposition method via local fractional calculus theory. The method in general is easy to implement and yields good results. Illustrative examples are included to demonstrate the validity and applicability of the new technique.</description><subject>Boundary conditions</subject><subject>Colleges & universities</subject><subject>Cybernetics</subject><subject>Decomposition</subject><subject>Decomposition (Mathematics)</subject><subject>Heat equation</subject><subject>Mathematical research</subject><subject>Mathematics</subject><subject>Mechanics</subject><subject>Partial differential equations</subject><subject>Science</subject><issn>1085-3375</issn><issn>1687-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFks1r2zAUwM3YYF23084Dw24rbvVpW7eFtF0LgRbWnsWLPhKF1GpluaXn_eN7jkNGT8MHWc8__d6HVRRfKTmlVMozRig_EzWTXL4rjmjdNhURRL3Hd9LKivNGfiw-9f2GEMIbIY6KP7MOtq85GNiWv-N2yCF2fRl9mdeuvOlcdR4eXNdjFIErB7m8eBpgomYp9KFblaErLxOYjMRdAoRdl8t57OxgRrB8CXldLuKYYsdNsnOXwjOant3n4oOHbe--7Nfj4v7y4m5-VS1ufl3PZ4sKpCK5soSBoqpdOmVIq4SxS-uwLUKZajmVrVkKBZSCl8J5arx0DTMADBtVxDp-XFxPXhthox9TeID0qiMEvQvEtNKQcBRbp8F70XA0OGlFTf2ysZZ4S-ulwRG3Al0_J9djihtnshvMNtg30vn9Yh_dLwCgKVdcUsZog4rvB8XT4PqsN3FIOJpeU1kLxqkSI3U6USvAukLnY8YZ4mPdQzCxcz5gfCZYLQX-3xYPnEwHTIp9n5w_FEWJHm-JHm-Jnm4J0j8meh06Cy_hP_C3CXaIOA8HGOsU7Zj6dvoOIYUc_vVzi5aatEwSQndGyvQupEhDSC3fbjhpNKdUjyn_At5U3Is</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Yang, Ai-Ming</creator><creator>Cattani, Carlo</creator><creator>Jafari, Hossein</creator><creator>Yang, Xiao-Jun</creator><general>Hindawi Limiteds</general><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6807-6675</orcidid></search><sort><creationdate>20130101</creationdate><title>Analytical Solutions of the One-Dimensional Heat Equations Arising in Fractal Transient Conduction with Local Fractional Derivative</title><author>Yang, Ai-Ming ; Cattani, Carlo ; Jafari, Hossein ; Yang, Xiao-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a590t-d02a9198be9c0894cdbde085012983158cb49a11af54ef1cf5e72caa274490de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Boundary conditions</topic><topic>Colleges & universities</topic><topic>Cybernetics</topic><topic>Decomposition</topic><topic>Decomposition (Mathematics)</topic><topic>Heat equation</topic><topic>Mathematical research</topic><topic>Mathematics</topic><topic>Mechanics</topic><topic>Partial differential equations</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Ai-Ming</creatorcontrib><creatorcontrib>Cattani, Carlo</creatorcontrib><creatorcontrib>Jafari, Hossein</creatorcontrib><creatorcontrib>Yang, Xiao-Jun</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ: Directory of Open Access Journals</collection><jtitle>Abstract and Applied Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Ai-Ming</au><au>Cattani, Carlo</au><au>Jafari, Hossein</au><au>Yang, Xiao-Jun</au><au>Atangana, Abdon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Solutions of the One-Dimensional Heat Equations Arising in Fractal Transient Conduction with Local Fractional Derivative</atitle><jtitle>Abstract and Applied Analysis</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>307</spage><epage>311-535</epage><pages>307-311-535</pages><issn>1085-3375</issn><eissn>1687-0409</eissn><abstract>The one-dimensional heat equations with the heat generation arising in fractal transient conduction associated with local fractional derivative operators are investigated. Analytical solutions are obtained by using the local fractional Adomian decomposition method via local fractional calculus theory. The method in general is easy to implement and yields good results. Illustrative examples are included to demonstrate the validity and applicability of the new technique.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2013/462535</doi><orcidid>https://orcid.org/0000-0001-6807-6675</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1085-3375 |
ispartof | Abstract and Applied Analysis, 2013-01, Vol.2013 (2013), p.307-311-535 |
issn | 1085-3375 1687-0409 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_aff473f5ee5d461fb7dd0fd16bc01384 |
source | Wiley Online Library Open Access; Publicly Available Content Database |
subjects | Boundary conditions Colleges & universities Cybernetics Decomposition Decomposition (Mathematics) Heat equation Mathematical research Mathematics Mechanics Partial differential equations Science |
title | Analytical Solutions of the One-Dimensional Heat Equations Arising in Fractal Transient Conduction with Local Fractional Derivative |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A20%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Solutions%20of%20the%20One-Dimensional%20Heat%20Equations%20Arising%20in%20Fractal%20Transient%20Conduction%20with%20Local%20Fractional%20Derivative&rft.jtitle=Abstract%20and%20Applied%20Analysis&rft.au=Yang,%20Ai-Ming&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=307&rft.epage=311-535&rft.pages=307-311-535&rft.issn=1085-3375&rft.eissn=1687-0409&rft_id=info:doi/10.1155/2013/462535&rft_dat=%3Cgale_doaj_%3EA426543378%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a590t-d02a9198be9c0894cdbde085012983158cb49a11af54ef1cf5e72caa274490de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1564231947&rft_id=info:pmid/&rft_galeid=A426543378&rft_airiti_id=P20160825001_201312_201609070065_201609070065_307_311_535&rfr_iscdi=true |