Loading…

Analytical Solutions of the One-Dimensional Heat Equations Arising in Fractal Transient Conduction with Local Fractional Derivative

The one-dimensional heat equations with the heat generation arising in fractal transient conduction associated with local fractional derivative operators are investigated. Analytical solutions are obtained by using the local fractional Adomian decomposition method via local fractional calculus theor...

Full description

Saved in:
Bibliographic Details
Published in:Abstract and Applied Analysis 2013-01, Vol.2013 (2013), p.307-311-535
Main Authors: Yang, Ai-Ming, Cattani, Carlo, Jafari, Hossein, Yang, Xiao-Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a590t-d02a9198be9c0894cdbde085012983158cb49a11af54ef1cf5e72caa274490de3
cites cdi_FETCH-LOGICAL-a590t-d02a9198be9c0894cdbde085012983158cb49a11af54ef1cf5e72caa274490de3
container_end_page 311-535
container_issue 2013
container_start_page 307
container_title Abstract and Applied Analysis
container_volume 2013
creator Yang, Ai-Ming
Cattani, Carlo
Jafari, Hossein
Yang, Xiao-Jun
description The one-dimensional heat equations with the heat generation arising in fractal transient conduction associated with local fractional derivative operators are investigated. Analytical solutions are obtained by using the local fractional Adomian decomposition method via local fractional calculus theory. The method in general is easy to implement and yields good results. Illustrative examples are included to demonstrate the validity and applicability of the new technique.
doi_str_mv 10.1155/2013/462535
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_aff473f5ee5d461fb7dd0fd16bc01384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A426543378</galeid><airiti_id>P20160825001_201312_201609070065_201609070065_307_311_535</airiti_id><doaj_id>oai_doaj_org_article_aff473f5ee5d461fb7dd0fd16bc01384</doaj_id><sourcerecordid>A426543378</sourcerecordid><originalsourceid>FETCH-LOGICAL-a590t-d02a9198be9c0894cdbde085012983158cb49a11af54ef1cf5e72caa274490de3</originalsourceid><addsrcrecordid>eNqFks1r2zAUwM3YYF23084Dw24rbvVpW7eFtF0LgRbWnsWLPhKF1GpluaXn_eN7jkNGT8MHWc8__d6HVRRfKTmlVMozRig_EzWTXL4rjmjdNhURRL3Hd9LKivNGfiw-9f2GEMIbIY6KP7MOtq85GNiWv-N2yCF2fRl9mdeuvOlcdR4eXNdjFIErB7m8eBpgomYp9KFblaErLxOYjMRdAoRdl8t57OxgRrB8CXldLuKYYsdNsnOXwjOant3n4oOHbe--7Nfj4v7y4m5-VS1ufl3PZ4sKpCK5soSBoqpdOmVIq4SxS-uwLUKZajmVrVkKBZSCl8J5arx0DTMADBtVxDp-XFxPXhthox9TeID0qiMEvQvEtNKQcBRbp8F70XA0OGlFTf2ysZZ4S-ulwRG3Al0_J9djihtnshvMNtg30vn9Yh_dLwCgKVdcUsZog4rvB8XT4PqsN3FIOJpeU1kLxqkSI3U6USvAukLnY8YZ4mPdQzCxcz5gfCZYLQX-3xYPnEwHTIp9n5w_FEWJHm-JHm-Jnm4J0j8meh06Cy_hP_C3CXaIOA8HGOsU7Zj6dvoOIYUc_vVzi5aatEwSQndGyvQupEhDSC3fbjhpNKdUjyn_At5U3Is</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1564231947</pqid></control><display><type>article</type><title>Analytical Solutions of the One-Dimensional Heat Equations Arising in Fractal Transient Conduction with Local Fractional Derivative</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Yang, Ai-Ming ; Cattani, Carlo ; Jafari, Hossein ; Yang, Xiao-Jun</creator><contributor>Atangana, Abdon</contributor><creatorcontrib>Yang, Ai-Ming ; Cattani, Carlo ; Jafari, Hossein ; Yang, Xiao-Jun ; Atangana, Abdon</creatorcontrib><description>The one-dimensional heat equations with the heat generation arising in fractal transient conduction associated with local fractional derivative operators are investigated. Analytical solutions are obtained by using the local fractional Adomian decomposition method via local fractional calculus theory. The method in general is easy to implement and yields good results. Illustrative examples are included to demonstrate the validity and applicability of the new technique.</description><identifier>ISSN: 1085-3375</identifier><identifier>EISSN: 1687-0409</identifier><identifier>DOI: 10.1155/2013/462535</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Boundary conditions ; Colleges &amp; universities ; Cybernetics ; Decomposition ; Decomposition (Mathematics) ; Heat equation ; Mathematical research ; Mathematics ; Mechanics ; Partial differential equations ; Science</subject><ispartof>Abstract and Applied Analysis, 2013-01, Vol.2013 (2013), p.307-311-535</ispartof><rights>Copyright © 2013 Ai-Ming Yang et al.</rights><rights>COPYRIGHT 2014 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2013 Ai-Ming Yang et al. Ai-Ming Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright 2013 Hindawi Publishing Corporation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a590t-d02a9198be9c0894cdbde085012983158cb49a11af54ef1cf5e72caa274490de3</citedby><cites>FETCH-LOGICAL-a590t-d02a9198be9c0894cdbde085012983158cb49a11af54ef1cf5e72caa274490de3</cites><orcidid>0000-0001-6807-6675</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1564231947/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1564231947?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,25740,27911,27912,36999,44577,74883</link.rule.ids></links><search><contributor>Atangana, Abdon</contributor><creatorcontrib>Yang, Ai-Ming</creatorcontrib><creatorcontrib>Cattani, Carlo</creatorcontrib><creatorcontrib>Jafari, Hossein</creatorcontrib><creatorcontrib>Yang, Xiao-Jun</creatorcontrib><title>Analytical Solutions of the One-Dimensional Heat Equations Arising in Fractal Transient Conduction with Local Fractional Derivative</title><title>Abstract and Applied Analysis</title><description>The one-dimensional heat equations with the heat generation arising in fractal transient conduction associated with local fractional derivative operators are investigated. Analytical solutions are obtained by using the local fractional Adomian decomposition method via local fractional calculus theory. The method in general is easy to implement and yields good results. Illustrative examples are included to demonstrate the validity and applicability of the new technique.</description><subject>Boundary conditions</subject><subject>Colleges &amp; universities</subject><subject>Cybernetics</subject><subject>Decomposition</subject><subject>Decomposition (Mathematics)</subject><subject>Heat equation</subject><subject>Mathematical research</subject><subject>Mathematics</subject><subject>Mechanics</subject><subject>Partial differential equations</subject><subject>Science</subject><issn>1085-3375</issn><issn>1687-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFks1r2zAUwM3YYF23084Dw24rbvVpW7eFtF0LgRbWnsWLPhKF1GpluaXn_eN7jkNGT8MHWc8__d6HVRRfKTmlVMozRig_EzWTXL4rjmjdNhURRL3Hd9LKivNGfiw-9f2GEMIbIY6KP7MOtq85GNiWv-N2yCF2fRl9mdeuvOlcdR4eXNdjFIErB7m8eBpgomYp9KFblaErLxOYjMRdAoRdl8t57OxgRrB8CXldLuKYYsdNsnOXwjOant3n4oOHbe--7Nfj4v7y4m5-VS1ufl3PZ4sKpCK5soSBoqpdOmVIq4SxS-uwLUKZajmVrVkKBZSCl8J5arx0DTMADBtVxDp-XFxPXhthox9TeID0qiMEvQvEtNKQcBRbp8F70XA0OGlFTf2ysZZ4S-ulwRG3Al0_J9djihtnshvMNtg30vn9Yh_dLwCgKVdcUsZog4rvB8XT4PqsN3FIOJpeU1kLxqkSI3U6USvAukLnY8YZ4mPdQzCxcz5gfCZYLQX-3xYPnEwHTIp9n5w_FEWJHm-JHm-Jnm4J0j8meh06Cy_hP_C3CXaIOA8HGOsU7Zj6dvoOIYUc_vVzi5aatEwSQndGyvQupEhDSC3fbjhpNKdUjyn_At5U3Is</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Yang, Ai-Ming</creator><creator>Cattani, Carlo</creator><creator>Jafari, Hossein</creator><creator>Yang, Xiao-Jun</creator><general>Hindawi Limiteds</general><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6807-6675</orcidid></search><sort><creationdate>20130101</creationdate><title>Analytical Solutions of the One-Dimensional Heat Equations Arising in Fractal Transient Conduction with Local Fractional Derivative</title><author>Yang, Ai-Ming ; Cattani, Carlo ; Jafari, Hossein ; Yang, Xiao-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a590t-d02a9198be9c0894cdbde085012983158cb49a11af54ef1cf5e72caa274490de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Boundary conditions</topic><topic>Colleges &amp; universities</topic><topic>Cybernetics</topic><topic>Decomposition</topic><topic>Decomposition (Mathematics)</topic><topic>Heat equation</topic><topic>Mathematical research</topic><topic>Mathematics</topic><topic>Mechanics</topic><topic>Partial differential equations</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Ai-Ming</creatorcontrib><creatorcontrib>Cattani, Carlo</creatorcontrib><creatorcontrib>Jafari, Hossein</creatorcontrib><creatorcontrib>Yang, Xiao-Jun</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ: Directory of Open Access Journals</collection><jtitle>Abstract and Applied Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Ai-Ming</au><au>Cattani, Carlo</au><au>Jafari, Hossein</au><au>Yang, Xiao-Jun</au><au>Atangana, Abdon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Solutions of the One-Dimensional Heat Equations Arising in Fractal Transient Conduction with Local Fractional Derivative</atitle><jtitle>Abstract and Applied Analysis</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>307</spage><epage>311-535</epage><pages>307-311-535</pages><issn>1085-3375</issn><eissn>1687-0409</eissn><abstract>The one-dimensional heat equations with the heat generation arising in fractal transient conduction associated with local fractional derivative operators are investigated. Analytical solutions are obtained by using the local fractional Adomian decomposition method via local fractional calculus theory. The method in general is easy to implement and yields good results. Illustrative examples are included to demonstrate the validity and applicability of the new technique.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2013/462535</doi><orcidid>https://orcid.org/0000-0001-6807-6675</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1085-3375
ispartof Abstract and Applied Analysis, 2013-01, Vol.2013 (2013), p.307-311-535
issn 1085-3375
1687-0409
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_aff473f5ee5d461fb7dd0fd16bc01384
source Wiley Online Library Open Access; Publicly Available Content Database
subjects Boundary conditions
Colleges & universities
Cybernetics
Decomposition
Decomposition (Mathematics)
Heat equation
Mathematical research
Mathematics
Mechanics
Partial differential equations
Science
title Analytical Solutions of the One-Dimensional Heat Equations Arising in Fractal Transient Conduction with Local Fractional Derivative
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A20%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Solutions%20of%20the%20One-Dimensional%20Heat%20Equations%20Arising%20in%20Fractal%20Transient%20Conduction%20with%20Local%20Fractional%20Derivative&rft.jtitle=Abstract%20and%20Applied%20Analysis&rft.au=Yang,%20Ai-Ming&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=307&rft.epage=311-535&rft.pages=307-311-535&rft.issn=1085-3375&rft.eissn=1687-0409&rft_id=info:doi/10.1155/2013/462535&rft_dat=%3Cgale_doaj_%3EA426543378%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a590t-d02a9198be9c0894cdbde085012983158cb49a11af54ef1cf5e72caa274490de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1564231947&rft_id=info:pmid/&rft_galeid=A426543378&rft_airiti_id=P20160825001_201312_201609070065_201609070065_307_311_535&rfr_iscdi=true