Loading…
Modelling and optimizing of calcium and non-phytate phosphorus requirements of male broiler chickens from 1 to 21 days of age using response surface methodology
The skeleton is the main site of P and Ca deposition; therefore, accurate estimation of Ca and P requirements is necessary to maintaining health and optimum performance of broiler chickens. A response surface methodology (RSM) using a central composite design (CCD) was used for evaluating and optimi...
Saved in:
Published in: | Animal (Cambridge, England) England), 2020, Vol.14 (8), p.1-1609 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The skeleton is the main site of P and Ca deposition; therefore, accurate estimation of Ca and P requirements is necessary to maintaining health and optimum performance of broiler chickens. A response surface methodology (RSM) using a central composite design (CCD) was used for evaluating and optimizing of Ca and non-phytate P (NPP) requirements of broiler chickens for optimal performance, ileal nutrient digestibility and bone mineralization from 1 to 21 days of age. A total of 750 one-day-old male broiler chickens (Ross 308) were randomly distributed into 50 cages including 9 treatments, each replicated 5 times (except central treatment with 10 replicates) and 15 birds in each cage by CCD. The dietary Ca levels of 4.3, 5.6, 8.6, 11.7 and 13.0 g/kg and NPP of 2.5, 2.9, 4.0, 5.0 and 5.4 g/kg were used for nine treatments of CCD. The results indicated that the linear and quadratic effects of NPP, quadratic effects of Ca and Ca Ă— NPP were significant for average weight gain (AWG, P < 0.05), average feed intake (AFI, P < 0.05), feed conversion ratio (FCR, P < 0.05) and Ca and P apparent ileal digestibility (AID, P < 0.05); however, the linear effect of Ca was significant only for FCR (P < 0.05). On the other hand, tibia and toe ash were affected by NPP (linear and quadratic, P < 0.01) and Ca (quadratic, P < 0.01). The second-order polynomial regression model was significant for AWG (R2 = 0.93, P < 0.001), AFI (R2 = 0.88, P < 0.001), FCR (R2 = 0.78, P < 0.001), AID of Ca (R2 = 0.78, P < 0.001) and P (R2 = 0.88, P < 0.001), tibia ash (R2 = 0.86, P < 0.001) and toe ash (R2 = 0.85, P < 0.001). The multi-objective optimization indicated that broiler chickens from 1 to 21 days of age need 7.03 and 4.47 g/kg of Ca and NPP, respectively, to achieve optimal AWG, FCR, tibia and toe ash. However, the dietary Ca and NPP levels can be reduced to 6.57 and 3.95 g/kg with a slight negative impact on performance and bone mineralization, respectively. In conclusion, the findings indicate that using multi-objective optimization model such as RSM provides more information regarding optimum Ca and NPP requirements of broiler chickens, considering the complex interaction between these two minerals. While the NPP levels are in line with current recommended requirements, Ca levels are considerably lower and suggest that current recommended Ca requirements may be in excess of the needs of the broiler. |
---|---|
ISSN: | 1751-7311 1751-732X |
DOI: | 10.1017/S1751731120000452 |