Loading…
Bayesian Reference Analysis for the Generalized Normal Linear Regression Model
This article proposes the use of the Bayesian reference analysis to estimate the parameters of the generalized normal linear regression model. It is shown that the reference prior led to a proper posterior distribution, while the Jeffreys prior returned an improper one. The inferential purposes were...
Saved in:
Published in: | Symmetry (Basel) 2021-05, Vol.13 (5), p.856 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article proposes the use of the Bayesian reference analysis to estimate the parameters of the generalized normal linear regression model. It is shown that the reference prior led to a proper posterior distribution, while the Jeffreys prior returned an improper one. The inferential purposes were obtained via Markov Chain Monte Carlo (MCMC). Furthermore, diagnostic techniques based on the Kullback–Leibler divergence were used. The proposed method was illustrated using artificial data and real data on the height and diameter of Eucalyptus clones from Brazil. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym13050856 |