Loading…

Simulation-Based Design and Optimization of Accelerometers Subject to High-Temperature and High-Impact Loads

Due to multi-factor coupling behavior, the performance evaluation of an accelerometer subject to high-temperature and high-impact loads poses a significant challenge during its design phase. In this paper, the simulation-based method is applied to optimize the design of the accelerometer. The propos...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2019-08, Vol.19 (17), p.3759
Main Authors: Li, Ji, Tian, Yaling, Dan, Junjie, Bi, Zhuming, Zheng, Jinhui, Li, Bailin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Due to multi-factor coupling behavior, the performance evaluation of an accelerometer subject to high-temperature and high-impact loads poses a significant challenge during its design phase. In this paper, the simulation-based method is applied to optimize the design of the accelerometer. The proposed method can reduce the uncertainties and improve the fidelity of the simulation in the sense that (i) the preloading conditions of fasteners are taken into consideration and modeled in static analysis; (ii) all types of loadings, including bolt preloads, thermal loads, and impact loads, are defined in virtual dynamic prototype of the accelerometer. It is our finding that from static and dynamic analysis, an accelerometer is exposed to the risk of malfunction and even a complete failure if the temperature rises to a certain limit; it has been proved that the thermal properties of sensing components are the most critical factors for an accelerometer to achieve its desired performance. Accordingly, we use a simulation-based method to optimize the thermal expansion coefficient of the sensing element and get the expected design objectives.
ISSN:1424-8220
1424-8220
DOI:10.3390/s19173759