Loading…

What ecotechnologies exist for recycling carbon and nutrients from domestic wastewater? A systematic map protocol

Background Pollution of the Baltic Sea continues to be a problem. Major terrestrial sources of nutrient emissions to the Baltic Sea are agriculture and wastewater, both major causes of eutrophication. Wastewater contains nutrients and organic matter that could constitute valuable products such as ag...

Full description

Saved in:
Bibliographic Details
Published in:Environmental evidence 2019-01, Vol.8 (1), p.1-7, Article 1
Main Authors: Haddaway, Neal R, Johannesdottir, Solveig L, Piniewski, MikoÅaj, Macura, Biljana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background Pollution of the Baltic Sea continues to be a problem. Major terrestrial sources of nutrient emissions to the Baltic Sea are agriculture and wastewater, both major causes of eutrophication. Wastewater contains nutrients and organic matter that could constitute valuable products such as agricultural fertilizers and source of energy. With the EU's action plan for circular economy, waste management and resource utilization is central. Thus the integration of resource recovery to wastewater management could create benefits beyond the wastewater sector. There is a growing interest in resource recovery from wastewater. However, there is no systematic overview of the literature on technologies to recover nutrients and carbon from wastewater sources done to date. Methods This systematic map will identify a representative list of studies on ecotechnologies for reusing carbon and nutrients (nitrogen and phosphorus) from domestic wastewater, which includes e.g. sewage sludge and wastewater fractions. Searches will be performed in five bibliographic databases, one search engine and 38 specialist websites. Searches will mainly be performed in English, search for literature in specialist websites will also include Finnish, Polish and Swedish. Coding and meta-data extraction will include information on ecotechnology name and short description, reuse outcome (i.e. reuse of carbon, nitrogen and/or phosphorus), type of reuse (i.e. whether it is explicit or implicit), study country and location, latitude and longitude. All screening and coding will be done after initial consistency checking. The outcomes of this systematic map will be a searchable database of coded studies. Findings will be presented in a geo-informational system (i.e. an evidence atlas) and knowledge gaps and clusters will be visualised via heat maps. Keywords: Circular economy, Energy recovery, Nitrogen, Nutrient recovery, Phosphorus, Resource recovery, Sewage
ISSN:2047-2382
2047-2382
DOI:10.1186/s13750-018-0145-z