Loading…
Improved delineation model of a standard 12-lead electrocardiogram based on a deep learning algorithm
Signal delineation of a standard 12-lead electrocardiogram (ECG) is a decisive step for retrieving complete information and extracting signal characteristics for each lead in cardiology clinical practice. However, it is arduous to manually assess the leads, as a variety of signal morphological varia...
Saved in:
Published in: | BMC medical informatics and decision making 2023-07, Vol.23 (1), p.139-15, Article 139 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Signal delineation of a standard 12-lead electrocardiogram (ECG) is a decisive step for retrieving complete information and extracting signal characteristics for each lead in cardiology clinical practice. However, it is arduous to manually assess the leads, as a variety of signal morphological variations in each lead have potential defects in recording, noise, or irregular heart rhythm/beat.
A computer-aided deep-learning algorithm is considered a state-of-the-art delineation model to classify ECG waveform and boundary in terms of the P-wave, QRS-complex, and T-wave and indicated the satisfactory result. This study implemented convolution layers as a part of convolutional neural networks for automated feature extraction and bidirectional long short-term memory as a classifier. For beat segmentation, we have experimented beat-based and patient-based approach.
The empirical results using both beat segmentation approaches, with a total of 14,588 beats were showed that our proposed model performed excellently well. All performance metrics above 95% and 93%, for beat-based and patient-based segmentation, respectively.
This is a significant step towards the clinical pertinency of automated 12-lead ECG delineation using deep learning. |
---|---|
ISSN: | 1472-6947 1472-6947 |
DOI: | 10.1186/s12911-023-02233-0 |