Loading…

Influence of Friction on the Formability of Fe-Zn-Coated IF Steels for Car Body Parts

This paper presents the formability results of galvanized Zn-Fe-based interstitial-free (IF) “galvanneal” steel sheets with different degrees of alloying. The Fe content of the Zn-Fe coatings was determined by titration method and the phase composition of the coatings was determined by raster electr...

Full description

Saved in:
Bibliographic Details
Published in:Lubricants 2022-11, Vol.10 (11), p.297
Main Authors: Evin, Emil, Tomáš, Miroslav
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents the formability results of galvanized Zn-Fe-based interstitial-free (IF) “galvanneal” steel sheets with different degrees of alloying. The Fe content of the Zn-Fe coatings was determined by titration method and the phase composition of the coatings was determined by raster electron microscopy with EDX analyzer. A deterioration of the adhesion of the Fe-Zn coating to the substrate was observed in the pre-alloyed coating. The applied modes of annealing and smooth rolling after the surface galvanization resulted in a change in the surface microgeometry parameters Ra and Pc. The suitability of the surface microgeometry of the used Zn-Fe-coated sheets was assessed using control diagrams and the capability indexes Cpk with respect to the defined specifications. The coefficient of friction was determined by dry friction cup test, and using Anticorit lubricant and microtene film as lubricants. With increasing Fe content in the coating, a slight increase in friction coefficient values was observed—a slight deterioration in formability. The results obtained indicate that for car body surface parts, the Fe content of the Zn-Fe coating should range from 7% to 12%.
ISSN:2075-4442
2075-4442
DOI:10.3390/lubricants10110297