Loading…
The evolution of the various structures required for hearing in Latimeria and tetrapods
Sarcopterygians evolved around 415 Ma and have developed a unique set of features, including the basilar papilla and the cochlear aqueduct of the inner ear. We provide an overview that shows the morphological integration of the various parts needed for hearing, e.g., basilar papilla, tectorial membr...
Saved in:
Published in: | IBRO neuroscience reports 2023-06, Vol.14, p.325-341 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c530t-b790b8ee6c5c2eed241812a4bacf8d35fca8f30219223b2d590a1d66c8a826e43 |
---|---|
cites | cdi_FETCH-LOGICAL-c530t-b790b8ee6c5c2eed241812a4bacf8d35fca8f30219223b2d590a1d66c8a826e43 |
container_end_page | 341 |
container_issue | |
container_start_page | 325 |
container_title | IBRO neuroscience reports |
container_volume | 14 |
creator | Fritzsch, Bernd Schultze, Hans-Peter Elliott, Karen L. |
description | Sarcopterygians evolved around 415 Ma and have developed a unique set of features, including the basilar papilla and the cochlear aqueduct of the inner ear. We provide an overview that shows the morphological integration of the various parts needed for hearing, e.g., basilar papilla, tectorial membrane, cochlear aqueduct, lungs, and tympanic membranes. The lagena of the inner ear evolved from a common macula of the saccule several times. It is near this lagena where the basilar papilla forms in Latimeria and tetrapods. The basilar papilla is lost in lungfish, certain caecilians and salamanders, but is transformed into the cochlea of mammals. Hearing in bony fish and tetrapods involves particle motion to improve sound pressure reception within the ear but also works without air. Lungs evolved after the chondrichthyans diverged and are present in sarcopterygians and actinopterygians. Lungs open to the outside in tetraposomorph sarcopterygians but are transformed from a lung into a swim bladder in ray-finned fishes. Elasmobranchs, polypterids, and many fossil fishes have open spiracles. In Latimeria, most frogs, and all amniotes, a tympanic membrane covering the spiracle evolved independently. The tympanic membrane is displaced by pressure changes and enabled tetrapods to perceive airborne sound pressure waves. The hyomandibular bone is associated with the spiracle/tympanic membrane in actinopterygians and piscine sarcopterygians. In tetrapods, it transforms into the stapes that connects the oval window of the inner ear with the tympanic membrane and allows hearing at higher frequencies by providing an impedance matching and amplification mechanism. The three characters—basilar papilla, cochlear aqueduct, and tympanic membrane—are fluid related elements in sarcopterygians, which interact with a set of unique features in Latimeria. Finally, we explore the possible interaction between the unique intracranial joint, basicranial muscle, and an enlarged notochord that allows fluid flow to the foramen magnum and the cochlear aqueduct which houses a comparatively small brain. |
doi_str_mv | 10.1016/j.ibneur.2023.03.007 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b06d9461a78849b3a6720b62cd923df6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2667242123000246</els_id><doaj_id>oai_doaj_org_article_b06d9461a78849b3a6720b62cd923df6</doaj_id><sourcerecordid>2794684892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-b790b8ee6c5c2eed241812a4bacf8d35fca8f30219223b2d590a1d66c8a826e43</originalsourceid><addsrcrecordid>eNp9UU1rGzEQFaWlCW7-QSk69mJ39GGt9tJSQtsEDL2k9Ci00qwts145ktbQf1-5m4TkUhiQGL15b_QeIe8ZrBgw9Wm_Ct2IU1px4GIFtaB5RS65Us2SS85eP7tfkKuc9wDA10zwpn1LLkQDoBoOl-T33Q4pnuIwlRBHGntaauNkU4hTprmkyZUpYaYJ76eQ0NM-JrrDChi3NIx0Y0s4YAqW2tHTgiXZY_T5HXnT2yHj1cO5IL--f7u7vllufv64vf66Wbq1gLLsmhY6jajc2nFEzyXTjFvZWddrL9a9s7oXwFnLuei4X7dgmVfKaau5QikW5Hbm9dHuzTGFg01_TLTB_GvEtDU2leAGNB0o30rFbKO1bDthzw50ijvfcuF7Vbm-zFzHqTugdzjWzwwvSF--jGFntvFkWHVTSAaV4eMDQ4r3E-ZiDiE7HAY7YvXTVPel0lJXwQWRM9SlmHPC_kmHgTlnbPZmzticMzZQC5o69uH5jk9Dj4lWwOcZgNX1U8Bksgs4OvQ1PVeqLeH_Cn8BUWq7EQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2794684892</pqid></control><display><type>article</type><title>The evolution of the various structures required for hearing in Latimeria and tetrapods</title><source>ScienceDirect - Connect here FIRST to enable access</source><source>PubMed Central</source><creator>Fritzsch, Bernd ; Schultze, Hans-Peter ; Elliott, Karen L.</creator><creatorcontrib>Fritzsch, Bernd ; Schultze, Hans-Peter ; Elliott, Karen L.</creatorcontrib><description>Sarcopterygians evolved around 415 Ma and have developed a unique set of features, including the basilar papilla and the cochlear aqueduct of the inner ear. We provide an overview that shows the morphological integration of the various parts needed for hearing, e.g., basilar papilla, tectorial membrane, cochlear aqueduct, lungs, and tympanic membranes. The lagena of the inner ear evolved from a common macula of the saccule several times. It is near this lagena where the basilar papilla forms in Latimeria and tetrapods. The basilar papilla is lost in lungfish, certain caecilians and salamanders, but is transformed into the cochlea of mammals. Hearing in bony fish and tetrapods involves particle motion to improve sound pressure reception within the ear but also works without air. Lungs evolved after the chondrichthyans diverged and are present in sarcopterygians and actinopterygians. Lungs open to the outside in tetraposomorph sarcopterygians but are transformed from a lung into a swim bladder in ray-finned fishes. Elasmobranchs, polypterids, and many fossil fishes have open spiracles. In Latimeria, most frogs, and all amniotes, a tympanic membrane covering the spiracle evolved independently. The tympanic membrane is displaced by pressure changes and enabled tetrapods to perceive airborne sound pressure waves. The hyomandibular bone is associated with the spiracle/tympanic membrane in actinopterygians and piscine sarcopterygians. In tetrapods, it transforms into the stapes that connects the oval window of the inner ear with the tympanic membrane and allows hearing at higher frequencies by providing an impedance matching and amplification mechanism. The three characters—basilar papilla, cochlear aqueduct, and tympanic membrane—are fluid related elements in sarcopterygians, which interact with a set of unique features in Latimeria. Finally, we explore the possible interaction between the unique intracranial joint, basicranial muscle, and an enlarged notochord that allows fluid flow to the foramen magnum and the cochlear aqueduct which houses a comparatively small brain.</description><identifier>ISSN: 2667-2421</identifier><identifier>EISSN: 2667-2421</identifier><identifier>DOI: 10.1016/j.ibneur.2023.03.007</identifier><identifier>PMID: 37006720</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Basilar papilla ; Research Paper ; Spiracular duct ; Stapes ; Tympanic membrane</subject><ispartof>IBRO neuroscience reports, 2023-06, Vol.14, p.325-341</ispartof><rights>2023 The Authors</rights><rights>2023 The Authors.</rights><rights>2023 The Authors 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-b790b8ee6c5c2eed241812a4bacf8d35fca8f30219223b2d590a1d66c8a826e43</citedby><cites>FETCH-LOGICAL-c530t-b790b8ee6c5c2eed241812a4bacf8d35fca8f30219223b2d590a1d66c8a826e43</cites><orcidid>0000-0002-4882-8398</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10063410/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2667242123000246$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3535,27903,27904,45759,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37006720$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fritzsch, Bernd</creatorcontrib><creatorcontrib>Schultze, Hans-Peter</creatorcontrib><creatorcontrib>Elliott, Karen L.</creatorcontrib><title>The evolution of the various structures required for hearing in Latimeria and tetrapods</title><title>IBRO neuroscience reports</title><addtitle>IBRO Neurosci Rep</addtitle><description>Sarcopterygians evolved around 415 Ma and have developed a unique set of features, including the basilar papilla and the cochlear aqueduct of the inner ear. We provide an overview that shows the morphological integration of the various parts needed for hearing, e.g., basilar papilla, tectorial membrane, cochlear aqueduct, lungs, and tympanic membranes. The lagena of the inner ear evolved from a common macula of the saccule several times. It is near this lagena where the basilar papilla forms in Latimeria and tetrapods. The basilar papilla is lost in lungfish, certain caecilians and salamanders, but is transformed into the cochlea of mammals. Hearing in bony fish and tetrapods involves particle motion to improve sound pressure reception within the ear but also works without air. Lungs evolved after the chondrichthyans diverged and are present in sarcopterygians and actinopterygians. Lungs open to the outside in tetraposomorph sarcopterygians but are transformed from a lung into a swim bladder in ray-finned fishes. Elasmobranchs, polypterids, and many fossil fishes have open spiracles. In Latimeria, most frogs, and all amniotes, a tympanic membrane covering the spiracle evolved independently. The tympanic membrane is displaced by pressure changes and enabled tetrapods to perceive airborne sound pressure waves. The hyomandibular bone is associated with the spiracle/tympanic membrane in actinopterygians and piscine sarcopterygians. In tetrapods, it transforms into the stapes that connects the oval window of the inner ear with the tympanic membrane and allows hearing at higher frequencies by providing an impedance matching and amplification mechanism. The three characters—basilar papilla, cochlear aqueduct, and tympanic membrane—are fluid related elements in sarcopterygians, which interact with a set of unique features in Latimeria. Finally, we explore the possible interaction between the unique intracranial joint, basicranial muscle, and an enlarged notochord that allows fluid flow to the foramen magnum and the cochlear aqueduct which houses a comparatively small brain.</description><subject>Basilar papilla</subject><subject>Research Paper</subject><subject>Spiracular duct</subject><subject>Stapes</subject><subject>Tympanic membrane</subject><issn>2667-2421</issn><issn>2667-2421</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9UU1rGzEQFaWlCW7-QSk69mJ39GGt9tJSQtsEDL2k9Ci00qwts145ktbQf1-5m4TkUhiQGL15b_QeIe8ZrBgw9Wm_Ct2IU1px4GIFtaB5RS65Us2SS85eP7tfkKuc9wDA10zwpn1LLkQDoBoOl-T33Q4pnuIwlRBHGntaauNkU4hTprmkyZUpYaYJ76eQ0NM-JrrDChi3NIx0Y0s4YAqW2tHTgiXZY_T5HXnT2yHj1cO5IL--f7u7vllufv64vf66Wbq1gLLsmhY6jajc2nFEzyXTjFvZWddrL9a9s7oXwFnLuei4X7dgmVfKaau5QikW5Hbm9dHuzTGFg01_TLTB_GvEtDU2leAGNB0o30rFbKO1bDthzw50ijvfcuF7Vbm-zFzHqTugdzjWzwwvSF--jGFntvFkWHVTSAaV4eMDQ4r3E-ZiDiE7HAY7YvXTVPel0lJXwQWRM9SlmHPC_kmHgTlnbPZmzticMzZQC5o69uH5jk9Dj4lWwOcZgNX1U8Bksgs4OvQ1PVeqLeH_Cn8BUWq7EQ</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Fritzsch, Bernd</creator><creator>Schultze, Hans-Peter</creator><creator>Elliott, Karen L.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4882-8398</orcidid></search><sort><creationdate>20230601</creationdate><title>The evolution of the various structures required for hearing in Latimeria and tetrapods</title><author>Fritzsch, Bernd ; Schultze, Hans-Peter ; Elliott, Karen L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-b790b8ee6c5c2eed241812a4bacf8d35fca8f30219223b2d590a1d66c8a826e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Basilar papilla</topic><topic>Research Paper</topic><topic>Spiracular duct</topic><topic>Stapes</topic><topic>Tympanic membrane</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fritzsch, Bernd</creatorcontrib><creatorcontrib>Schultze, Hans-Peter</creatorcontrib><creatorcontrib>Elliott, Karen L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IBRO neuroscience reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fritzsch, Bernd</au><au>Schultze, Hans-Peter</au><au>Elliott, Karen L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The evolution of the various structures required for hearing in Latimeria and tetrapods</atitle><jtitle>IBRO neuroscience reports</jtitle><addtitle>IBRO Neurosci Rep</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>14</volume><spage>325</spage><epage>341</epage><pages>325-341</pages><issn>2667-2421</issn><eissn>2667-2421</eissn><abstract>Sarcopterygians evolved around 415 Ma and have developed a unique set of features, including the basilar papilla and the cochlear aqueduct of the inner ear. We provide an overview that shows the morphological integration of the various parts needed for hearing, e.g., basilar papilla, tectorial membrane, cochlear aqueduct, lungs, and tympanic membranes. The lagena of the inner ear evolved from a common macula of the saccule several times. It is near this lagena where the basilar papilla forms in Latimeria and tetrapods. The basilar papilla is lost in lungfish, certain caecilians and salamanders, but is transformed into the cochlea of mammals. Hearing in bony fish and tetrapods involves particle motion to improve sound pressure reception within the ear but also works without air. Lungs evolved after the chondrichthyans diverged and are present in sarcopterygians and actinopterygians. Lungs open to the outside in tetraposomorph sarcopterygians but are transformed from a lung into a swim bladder in ray-finned fishes. Elasmobranchs, polypterids, and many fossil fishes have open spiracles. In Latimeria, most frogs, and all amniotes, a tympanic membrane covering the spiracle evolved independently. The tympanic membrane is displaced by pressure changes and enabled tetrapods to perceive airborne sound pressure waves. The hyomandibular bone is associated with the spiracle/tympanic membrane in actinopterygians and piscine sarcopterygians. In tetrapods, it transforms into the stapes that connects the oval window of the inner ear with the tympanic membrane and allows hearing at higher frequencies by providing an impedance matching and amplification mechanism. The three characters—basilar papilla, cochlear aqueduct, and tympanic membrane—are fluid related elements in sarcopterygians, which interact with a set of unique features in Latimeria. Finally, we explore the possible interaction between the unique intracranial joint, basicranial muscle, and an enlarged notochord that allows fluid flow to the foramen magnum and the cochlear aqueduct which houses a comparatively small brain.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>37006720</pmid><doi>10.1016/j.ibneur.2023.03.007</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-4882-8398</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2667-2421 |
ispartof | IBRO neuroscience reports, 2023-06, Vol.14, p.325-341 |
issn | 2667-2421 2667-2421 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b06d9461a78849b3a6720b62cd923df6 |
source | ScienceDirect - Connect here FIRST to enable access; PubMed Central |
subjects | Basilar papilla Research Paper Spiracular duct Stapes Tympanic membrane |
title | The evolution of the various structures required for hearing in Latimeria and tetrapods |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A51%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20evolution%20of%20the%20various%20structures%20required%20for%20hearing%20in%20Latimeria%20and%20tetrapods&rft.jtitle=IBRO%20neuroscience%20reports&rft.au=Fritzsch,%20Bernd&rft.date=2023-06-01&rft.volume=14&rft.spage=325&rft.epage=341&rft.pages=325-341&rft.issn=2667-2421&rft.eissn=2667-2421&rft_id=info:doi/10.1016/j.ibneur.2023.03.007&rft_dat=%3Cproquest_doaj_%3E2794684892%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c530t-b790b8ee6c5c2eed241812a4bacf8d35fca8f30219223b2d590a1d66c8a826e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2794684892&rft_id=info:pmid/37006720&rfr_iscdi=true |