Loading…

Continuous Resonance Tuning without Blindness by Applying Nonlinear Properties of PIN Diodes

Metamaterial antennas consisting of periodical units are suitable for achieving tunable properties by employing active elements to each unit. However, for compact metamaterials with a very limited number of periodical units, resonance blindness exists. In this paper, we introduce a method to achieve...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2021-04, Vol.21 (8), p.2816
Main Authors: Luo, Yong, Liu, Hongtao, He, Yiming, Cui, Hengrong, Yang, Guangli
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Metamaterial antennas consisting of periodical units are suitable for achieving tunable properties by employing active elements to each unit. However, for compact metamaterials with a very limited number of periodical units, resonance blindness exists. In this paper, we introduce a method to achieve continuous tuning without resonance blindness by exploring hence, taking advantage of nonlinear properties of PIN diodes. First, we obtain the equivalent impedance of the PIN diode through measurements, then fit these nonlinear curves with mathematical expressions. Afterwards, we build the PIN diode model with these mathematical equations, making it compatible with implementing co-simulation between the passive electromagnetic model and the active element of PIN diodes and, particularly, the nonlinear effects can be considered. Next, we design a compact two-unit metamaterial antenna as an example to illustrate the electromagnetic co-simulation. Finally, we implement the experiments with a micro-control unit to validate this method. In addition, the nonlinear stability and the supplying voltage tolerance of nonlinear states for both two kinds of PIN diodes are investigated as well. This method of obtaining smooth tuning with nonlinear properties of PIN diodes can be applied to other active devices, if only PIN diodes are utilized.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21082816