Loading…

Development of novel melt-compounded starch-grafted polypropylene/polypropylene-grafted maleic anhydride/organoclay ternary hybrids

Starch-grafted polypropylene (PP-g-starch)/organoclay nanocomposites were melt-compounded using a corotating twin-screw extruder. Homopolymer or copolymer-based polypropylene-grafted maleic anhydrides (PP-g-MA) with different molecular weights and different maleic anhydride (MA) grafting levels were...

Full description

Saved in:
Bibliographic Details
Published in:Express polymer letters 2012-11, Vol.6 (11), p.937-952
Main Authors: Tessier, R., Lafranche, E., Krawczak, P.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Starch-grafted polypropylene (PP-g-starch)/organoclay nanocomposites were melt-compounded using a corotating twin-screw extruder. Homopolymer or copolymer-based polypropylene-grafted maleic anhydrides (PP-g-MA) with different molecular weights and different maleic anhydride (MA) grafting levels were added at different weight contents as compatibilizer. Two organo-modified montmorillonites were used, the first one containing polar functional groups (Cloisite®30B) having affinity to the starch phase, and the other one containing non polar-groups (Cloisite®20A) having affinity to the polypropylene phase of the polymer matrix. Whatever the MA grafting level and the molecular weight and content of PP-g-MA, no significant immiscibility of PP-g-starch/PP-g-MA blends is evidenced. Regarding clay dispersion, adding a low content of ethylene-propylene copolymer-based PP-g-MA compatibilizer having a high MA-grafting level, and a polar organoclay (Cloisite®30B) is the most desirable formulation to optimize clay intercalation and exfoliation in PP-g-starch. Nevertheless, regarding the reinforcement effect, whatever the PP-g-MA compatibilizer, the addition of non polar organoclay (Cloisite®20A) is preferably recommended to reach higher tensile properties (modulus, yield stress, strength) without significant loss of ductility.
ISSN:1788-618X
1788-618X
DOI:10.3144/expresspolymlett.2012.99