Loading…
Distributed Optimization Methods for Nonconvex Problems with Inequality Constraints over Time-Varying Networks
Network-structured optimization problems are found widely in engineering applications. In this paper, we investigate a nonconvex distributed optimization problem with inequality constraints associated with a time-varying multiagent network, in which each agent is allowed to locally access its own co...
Saved in:
Published in: | Complexity (New York, N.Y.) N.Y.), 2017-01, Vol.2017 (2017), p.1-10 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c465t-2a830606be7a22799d78bcb8b5b9ed6ff79cd9f6019f8386e86444ed60e188dd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c465t-2a830606be7a22799d78bcb8b5b9ed6ff79cd9f6019f8386e86444ed60e188dd3 |
container_end_page | 10 |
container_issue | 2017 |
container_start_page | 1 |
container_title | Complexity (New York, N.Y.) |
container_volume | 2017 |
creator | Wu, Changzhi Wu, Zhiyou Gu, Chuanye Li, Jueyou |
description | Network-structured optimization problems are found widely in engineering applications. In this paper, we investigate a nonconvex distributed optimization problem with inequality constraints associated with a time-varying multiagent network, in which each agent is allowed to locally access its own cost function and collaboratively minimize a sum of nonconvex cost functions for all the agents in the network. Based on successive convex approximation techniques, we first approximate locally the nonconvex problem by a sequence of strongly convex constrained subproblems. In order to realize distributed computation, we then exploit the exact penalty function method to transform the sequence of convex constrained subproblems into unconstrained ones. Finally, a fully distributed method is designed to solve the unconstrained subproblems. The convergence of the proposed algorithm is rigorously established, which shows that the algorithm can converge asymptotically to a stationary solution of the problem under consideration. Several simulation results are illustrated to show the performance of the proposed method. |
doi_str_mv | 10.1155/2017/3610283 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b0f768ea6f4744cd99963cff7842c93b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A547622184</galeid><doaj_id>oai_doaj_org_article_b0f768ea6f4744cd99963cff7842c93b</doaj_id><sourcerecordid>A547622184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-2a830606be7a22799d78bcb8b5b9ed6ff79cd9f6019f8386e86444ed60e188dd3</originalsourceid><addsrcrecordid>eNqFkc1vFCEYhydGE2v15tmQeNRpgWH4ODZbPzaprYfqlTDDyy7rDmyB7Vr_elmn0aPhAHl5eHjze5vmNcFnhPT9OcVEnHecYCq7J80JwUq1uKf86fEseEuFFM-bFzlvMMaKd-KkCZc-l-SHfQGLbnbFT_6XKT4G9AXKOtqMXEzoOoYxhnv4ib6mOGxhyujgyxotA9ztzdaXB7SIoYqMDyWjeA8J3foJ2u8mPfiwQtdQDjH9yC-bZ85sM7x63E-bbx8_3C4-t1c3n5aLi6t2ZLwvLTWywxzzAYShVChlhRzGQQ79oMBy54QarXIcE-VkJzlIzhirNxiIlNZ2p81y9tpoNnqX_FQb0dF4_acQ00qbVPy4BT1gJ7gEwx0TjFWtqsmM9QvJ6Ki6obrezq5dind7yEVv4j6F2r6ugWMpmKCqUmcztTJV6oOLNY2xLguTr-GB87V-0TPBKSWS1Qfv5wdjijkncH_bJFgfx3m0C_04zoq_m_G1D9Yc_P_oNzMNlQFn_tGEUdHj7jfgBqoh</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010874729</pqid></control><display><type>article</type><title>Distributed Optimization Methods for Nonconvex Problems with Inequality Constraints over Time-Varying Networks</title><source>Wiley_OA刊</source><creator>Wu, Changzhi ; Wu, Zhiyou ; Gu, Chuanye ; Li, Jueyou</creator><contributor>De Domenico, Manlio ; Manlio De Domenico</contributor><creatorcontrib>Wu, Changzhi ; Wu, Zhiyou ; Gu, Chuanye ; Li, Jueyou ; De Domenico, Manlio ; Manlio De Domenico</creatorcontrib><description>Network-structured optimization problems are found widely in engineering applications. In this paper, we investigate a nonconvex distributed optimization problem with inequality constraints associated with a time-varying multiagent network, in which each agent is allowed to locally access its own cost function and collaboratively minimize a sum of nonconvex cost functions for all the agents in the network. Based on successive convex approximation techniques, we first approximate locally the nonconvex problem by a sequence of strongly convex constrained subproblems. In order to realize distributed computation, we then exploit the exact penalty function method to transform the sequence of convex constrained subproblems into unconstrained ones. Finally, a fully distributed method is designed to solve the unconstrained subproblems. The convergence of the proposed algorithm is rigorously established, which shows that the algorithm can converge asymptotically to a stationary solution of the problem under consideration. Several simulation results are illustrated to show the performance of the proposed method.</description><identifier>ISSN: 1076-2787</identifier><identifier>EISSN: 1099-0526</identifier><identifier>DOI: 10.1155/2017/3610283</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Access to information ; Algorithms ; Analysis ; Computer simulation ; Connectivity ; Constraints ; Convergence ; Convex analysis ; Cost function ; Cybernetics ; Inequalities (Mathematics) ; Mathematical optimization ; Methods ; Multi-agent systems ; Multiagent systems ; Nonlinear programming ; Optimization ; Penalty function ; Signal processing ; Wireless networks</subject><ispartof>Complexity (New York, N.Y.), 2017-01, Vol.2017 (2017), p.1-10</ispartof><rights>Copyright © 2017 Jueyou Li et al.</rights><rights>COPYRIGHT 2017 John Wiley & Sons, Inc.</rights><rights>Copyright © 2017 Jueyou Li et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-2a830606be7a22799d78bcb8b5b9ed6ff79cd9f6019f8386e86444ed60e188dd3</citedby><cites>FETCH-LOGICAL-c465t-2a830606be7a22799d78bcb8b5b9ed6ff79cd9f6019f8386e86444ed60e188dd3</cites><orcidid>0000-0003-3537-1162 ; 0000-0002-2276-6862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>De Domenico, Manlio</contributor><contributor>Manlio De Domenico</contributor><creatorcontrib>Wu, Changzhi</creatorcontrib><creatorcontrib>Wu, Zhiyou</creatorcontrib><creatorcontrib>Gu, Chuanye</creatorcontrib><creatorcontrib>Li, Jueyou</creatorcontrib><title>Distributed Optimization Methods for Nonconvex Problems with Inequality Constraints over Time-Varying Networks</title><title>Complexity (New York, N.Y.)</title><description>Network-structured optimization problems are found widely in engineering applications. In this paper, we investigate a nonconvex distributed optimization problem with inequality constraints associated with a time-varying multiagent network, in which each agent is allowed to locally access its own cost function and collaboratively minimize a sum of nonconvex cost functions for all the agents in the network. Based on successive convex approximation techniques, we first approximate locally the nonconvex problem by a sequence of strongly convex constrained subproblems. In order to realize distributed computation, we then exploit the exact penalty function method to transform the sequence of convex constrained subproblems into unconstrained ones. Finally, a fully distributed method is designed to solve the unconstrained subproblems. The convergence of the proposed algorithm is rigorously established, which shows that the algorithm can converge asymptotically to a stationary solution of the problem under consideration. Several simulation results are illustrated to show the performance of the proposed method.</description><subject>Access to information</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Computer simulation</subject><subject>Connectivity</subject><subject>Constraints</subject><subject>Convergence</subject><subject>Convex analysis</subject><subject>Cost function</subject><subject>Cybernetics</subject><subject>Inequalities (Mathematics)</subject><subject>Mathematical optimization</subject><subject>Methods</subject><subject>Multi-agent systems</subject><subject>Multiagent systems</subject><subject>Nonlinear programming</subject><subject>Optimization</subject><subject>Penalty function</subject><subject>Signal processing</subject><subject>Wireless networks</subject><issn>1076-2787</issn><issn>1099-0526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkc1vFCEYhydGE2v15tmQeNRpgWH4ODZbPzaprYfqlTDDyy7rDmyB7Vr_elmn0aPhAHl5eHjze5vmNcFnhPT9OcVEnHecYCq7J80JwUq1uKf86fEseEuFFM-bFzlvMMaKd-KkCZc-l-SHfQGLbnbFT_6XKT4G9AXKOtqMXEzoOoYxhnv4ib6mOGxhyujgyxotA9ztzdaXB7SIoYqMDyWjeA8J3foJ2u8mPfiwQtdQDjH9yC-bZ85sM7x63E-bbx8_3C4-t1c3n5aLi6t2ZLwvLTWywxzzAYShVChlhRzGQQ79oMBy54QarXIcE-VkJzlIzhirNxiIlNZ2p81y9tpoNnqX_FQb0dF4_acQ00qbVPy4BT1gJ7gEwx0TjFWtqsmM9QvJ6Ki6obrezq5dind7yEVv4j6F2r6ugWMpmKCqUmcztTJV6oOLNY2xLguTr-GB87V-0TPBKSWS1Qfv5wdjijkncH_bJFgfx3m0C_04zoq_m_G1D9Yc_P_oNzMNlQFn_tGEUdHj7jfgBqoh</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Wu, Changzhi</creator><creator>Wu, Zhiyou</creator><creator>Gu, Chuanye</creator><creator>Li, Jueyou</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><general>Hindawi-Wiley</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>AHMDM</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3537-1162</orcidid><orcidid>https://orcid.org/0000-0002-2276-6862</orcidid></search><sort><creationdate>20170101</creationdate><title>Distributed Optimization Methods for Nonconvex Problems with Inequality Constraints over Time-Varying Networks</title><author>Wu, Changzhi ; Wu, Zhiyou ; Gu, Chuanye ; Li, Jueyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-2a830606be7a22799d78bcb8b5b9ed6ff79cd9f6019f8386e86444ed60e188dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Access to information</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Computer simulation</topic><topic>Connectivity</topic><topic>Constraints</topic><topic>Convergence</topic><topic>Convex analysis</topic><topic>Cost function</topic><topic>Cybernetics</topic><topic>Inequalities (Mathematics)</topic><topic>Mathematical optimization</topic><topic>Methods</topic><topic>Multi-agent systems</topic><topic>Multiagent systems</topic><topic>Nonlinear programming</topic><topic>Optimization</topic><topic>Penalty function</topic><topic>Signal processing</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Changzhi</creatorcontrib><creatorcontrib>Wu, Zhiyou</creatorcontrib><creatorcontrib>Gu, Chuanye</creatorcontrib><creatorcontrib>Li, Jueyou</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>قاعدة العلوم الإنسانية - e-Marefa Humanities</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Complexity (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Changzhi</au><au>Wu, Zhiyou</au><au>Gu, Chuanye</au><au>Li, Jueyou</au><au>De Domenico, Manlio</au><au>Manlio De Domenico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Optimization Methods for Nonconvex Problems with Inequality Constraints over Time-Varying Networks</atitle><jtitle>Complexity (New York, N.Y.)</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1076-2787</issn><eissn>1099-0526</eissn><abstract>Network-structured optimization problems are found widely in engineering applications. In this paper, we investigate a nonconvex distributed optimization problem with inequality constraints associated with a time-varying multiagent network, in which each agent is allowed to locally access its own cost function and collaboratively minimize a sum of nonconvex cost functions for all the agents in the network. Based on successive convex approximation techniques, we first approximate locally the nonconvex problem by a sequence of strongly convex constrained subproblems. In order to realize distributed computation, we then exploit the exact penalty function method to transform the sequence of convex constrained subproblems into unconstrained ones. Finally, a fully distributed method is designed to solve the unconstrained subproblems. The convergence of the proposed algorithm is rigorously established, which shows that the algorithm can converge asymptotically to a stationary solution of the problem under consideration. Several simulation results are illustrated to show the performance of the proposed method.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2017/3610283</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3537-1162</orcidid><orcidid>https://orcid.org/0000-0002-2276-6862</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-2787 |
ispartof | Complexity (New York, N.Y.), 2017-01, Vol.2017 (2017), p.1-10 |
issn | 1076-2787 1099-0526 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b0f768ea6f4744cd99963cff7842c93b |
source | Wiley_OA刊 |
subjects | Access to information Algorithms Analysis Computer simulation Connectivity Constraints Convergence Convex analysis Cost function Cybernetics Inequalities (Mathematics) Mathematical optimization Methods Multi-agent systems Multiagent systems Nonlinear programming Optimization Penalty function Signal processing Wireless networks |
title | Distributed Optimization Methods for Nonconvex Problems with Inequality Constraints over Time-Varying Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A14%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Optimization%20Methods%20for%20Nonconvex%20Problems%20with%20Inequality%20Constraints%20over%20Time-Varying%20Networks&rft.jtitle=Complexity%20(New%20York,%20N.Y.)&rft.au=Wu,%20Changzhi&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1076-2787&rft.eissn=1099-0526&rft_id=info:doi/10.1155/2017/3610283&rft_dat=%3Cgale_doaj_%3EA547622184%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-2a830606be7a22799d78bcb8b5b9ed6ff79cd9f6019f8386e86444ed60e188dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2010874729&rft_id=info:pmid/&rft_galeid=A547622184&rfr_iscdi=true |