Loading…

Distributed Optimization Methods for Nonconvex Problems with Inequality Constraints over Time-Varying Networks

Network-structured optimization problems are found widely in engineering applications. In this paper, we investigate a nonconvex distributed optimization problem with inequality constraints associated with a time-varying multiagent network, in which each agent is allowed to locally access its own co...

Full description

Saved in:
Bibliographic Details
Published in:Complexity (New York, N.Y.) N.Y.), 2017-01, Vol.2017 (2017), p.1-10
Main Authors: Wu, Changzhi, Wu, Zhiyou, Gu, Chuanye, Li, Jueyou
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-2a830606be7a22799d78bcb8b5b9ed6ff79cd9f6019f8386e86444ed60e188dd3
cites cdi_FETCH-LOGICAL-c465t-2a830606be7a22799d78bcb8b5b9ed6ff79cd9f6019f8386e86444ed60e188dd3
container_end_page 10
container_issue 2017
container_start_page 1
container_title Complexity (New York, N.Y.)
container_volume 2017
creator Wu, Changzhi
Wu, Zhiyou
Gu, Chuanye
Li, Jueyou
description Network-structured optimization problems are found widely in engineering applications. In this paper, we investigate a nonconvex distributed optimization problem with inequality constraints associated with a time-varying multiagent network, in which each agent is allowed to locally access its own cost function and collaboratively minimize a sum of nonconvex cost functions for all the agents in the network. Based on successive convex approximation techniques, we first approximate locally the nonconvex problem by a sequence of strongly convex constrained subproblems. In order to realize distributed computation, we then exploit the exact penalty function method to transform the sequence of convex constrained subproblems into unconstrained ones. Finally, a fully distributed method is designed to solve the unconstrained subproblems. The convergence of the proposed algorithm is rigorously established, which shows that the algorithm can converge asymptotically to a stationary solution of the problem under consideration. Several simulation results are illustrated to show the performance of the proposed method.
doi_str_mv 10.1155/2017/3610283
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b0f768ea6f4744cd99963cff7842c93b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A547622184</galeid><doaj_id>oai_doaj_org_article_b0f768ea6f4744cd99963cff7842c93b</doaj_id><sourcerecordid>A547622184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-2a830606be7a22799d78bcb8b5b9ed6ff79cd9f6019f8386e86444ed60e188dd3</originalsourceid><addsrcrecordid>eNqFkc1vFCEYhydGE2v15tmQeNRpgWH4ODZbPzaprYfqlTDDyy7rDmyB7Vr_elmn0aPhAHl5eHjze5vmNcFnhPT9OcVEnHecYCq7J80JwUq1uKf86fEseEuFFM-bFzlvMMaKd-KkCZc-l-SHfQGLbnbFT_6XKT4G9AXKOtqMXEzoOoYxhnv4ib6mOGxhyujgyxotA9ztzdaXB7SIoYqMDyWjeA8J3foJ2u8mPfiwQtdQDjH9yC-bZ85sM7x63E-bbx8_3C4-t1c3n5aLi6t2ZLwvLTWywxzzAYShVChlhRzGQQ79oMBy54QarXIcE-VkJzlIzhirNxiIlNZ2p81y9tpoNnqX_FQb0dF4_acQ00qbVPy4BT1gJ7gEwx0TjFWtqsmM9QvJ6Ki6obrezq5dind7yEVv4j6F2r6ugWMpmKCqUmcztTJV6oOLNY2xLguTr-GB87V-0TPBKSWS1Qfv5wdjijkncH_bJFgfx3m0C_04zoq_m_G1D9Yc_P_oNzMNlQFn_tGEUdHj7jfgBqoh</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010874729</pqid></control><display><type>article</type><title>Distributed Optimization Methods for Nonconvex Problems with Inequality Constraints over Time-Varying Networks</title><source>Wiley_OA刊</source><creator>Wu, Changzhi ; Wu, Zhiyou ; Gu, Chuanye ; Li, Jueyou</creator><contributor>De Domenico, Manlio ; Manlio De Domenico</contributor><creatorcontrib>Wu, Changzhi ; Wu, Zhiyou ; Gu, Chuanye ; Li, Jueyou ; De Domenico, Manlio ; Manlio De Domenico</creatorcontrib><description>Network-structured optimization problems are found widely in engineering applications. In this paper, we investigate a nonconvex distributed optimization problem with inequality constraints associated with a time-varying multiagent network, in which each agent is allowed to locally access its own cost function and collaboratively minimize a sum of nonconvex cost functions for all the agents in the network. Based on successive convex approximation techniques, we first approximate locally the nonconvex problem by a sequence of strongly convex constrained subproblems. In order to realize distributed computation, we then exploit the exact penalty function method to transform the sequence of convex constrained subproblems into unconstrained ones. Finally, a fully distributed method is designed to solve the unconstrained subproblems. The convergence of the proposed algorithm is rigorously established, which shows that the algorithm can converge asymptotically to a stationary solution of the problem under consideration. Several simulation results are illustrated to show the performance of the proposed method.</description><identifier>ISSN: 1076-2787</identifier><identifier>EISSN: 1099-0526</identifier><identifier>DOI: 10.1155/2017/3610283</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Access to information ; Algorithms ; Analysis ; Computer simulation ; Connectivity ; Constraints ; Convergence ; Convex analysis ; Cost function ; Cybernetics ; Inequalities (Mathematics) ; Mathematical optimization ; Methods ; Multi-agent systems ; Multiagent systems ; Nonlinear programming ; Optimization ; Penalty function ; Signal processing ; Wireless networks</subject><ispartof>Complexity (New York, N.Y.), 2017-01, Vol.2017 (2017), p.1-10</ispartof><rights>Copyright © 2017 Jueyou Li et al.</rights><rights>COPYRIGHT 2017 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2017 Jueyou Li et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-2a830606be7a22799d78bcb8b5b9ed6ff79cd9f6019f8386e86444ed60e188dd3</citedby><cites>FETCH-LOGICAL-c465t-2a830606be7a22799d78bcb8b5b9ed6ff79cd9f6019f8386e86444ed60e188dd3</cites><orcidid>0000-0003-3537-1162 ; 0000-0002-2276-6862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>De Domenico, Manlio</contributor><contributor>Manlio De Domenico</contributor><creatorcontrib>Wu, Changzhi</creatorcontrib><creatorcontrib>Wu, Zhiyou</creatorcontrib><creatorcontrib>Gu, Chuanye</creatorcontrib><creatorcontrib>Li, Jueyou</creatorcontrib><title>Distributed Optimization Methods for Nonconvex Problems with Inequality Constraints over Time-Varying Networks</title><title>Complexity (New York, N.Y.)</title><description>Network-structured optimization problems are found widely in engineering applications. In this paper, we investigate a nonconvex distributed optimization problem with inequality constraints associated with a time-varying multiagent network, in which each agent is allowed to locally access its own cost function and collaboratively minimize a sum of nonconvex cost functions for all the agents in the network. Based on successive convex approximation techniques, we first approximate locally the nonconvex problem by a sequence of strongly convex constrained subproblems. In order to realize distributed computation, we then exploit the exact penalty function method to transform the sequence of convex constrained subproblems into unconstrained ones. Finally, a fully distributed method is designed to solve the unconstrained subproblems. The convergence of the proposed algorithm is rigorously established, which shows that the algorithm can converge asymptotically to a stationary solution of the problem under consideration. Several simulation results are illustrated to show the performance of the proposed method.</description><subject>Access to information</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Computer simulation</subject><subject>Connectivity</subject><subject>Constraints</subject><subject>Convergence</subject><subject>Convex analysis</subject><subject>Cost function</subject><subject>Cybernetics</subject><subject>Inequalities (Mathematics)</subject><subject>Mathematical optimization</subject><subject>Methods</subject><subject>Multi-agent systems</subject><subject>Multiagent systems</subject><subject>Nonlinear programming</subject><subject>Optimization</subject><subject>Penalty function</subject><subject>Signal processing</subject><subject>Wireless networks</subject><issn>1076-2787</issn><issn>1099-0526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkc1vFCEYhydGE2v15tmQeNRpgWH4ODZbPzaprYfqlTDDyy7rDmyB7Vr_elmn0aPhAHl5eHjze5vmNcFnhPT9OcVEnHecYCq7J80JwUq1uKf86fEseEuFFM-bFzlvMMaKd-KkCZc-l-SHfQGLbnbFT_6XKT4G9AXKOtqMXEzoOoYxhnv4ib6mOGxhyujgyxotA9ztzdaXB7SIoYqMDyWjeA8J3foJ2u8mPfiwQtdQDjH9yC-bZ85sM7x63E-bbx8_3C4-t1c3n5aLi6t2ZLwvLTWywxzzAYShVChlhRzGQQ79oMBy54QarXIcE-VkJzlIzhirNxiIlNZ2p81y9tpoNnqX_FQb0dF4_acQ00qbVPy4BT1gJ7gEwx0TjFWtqsmM9QvJ6Ki6obrezq5dind7yEVv4j6F2r6ugWMpmKCqUmcztTJV6oOLNY2xLguTr-GB87V-0TPBKSWS1Qfv5wdjijkncH_bJFgfx3m0C_04zoq_m_G1D9Yc_P_oNzMNlQFn_tGEUdHj7jfgBqoh</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Wu, Changzhi</creator><creator>Wu, Zhiyou</creator><creator>Gu, Chuanye</creator><creator>Li, Jueyou</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><general>Hindawi-Wiley</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>AHMDM</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3537-1162</orcidid><orcidid>https://orcid.org/0000-0002-2276-6862</orcidid></search><sort><creationdate>20170101</creationdate><title>Distributed Optimization Methods for Nonconvex Problems with Inequality Constraints over Time-Varying Networks</title><author>Wu, Changzhi ; Wu, Zhiyou ; Gu, Chuanye ; Li, Jueyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-2a830606be7a22799d78bcb8b5b9ed6ff79cd9f6019f8386e86444ed60e188dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Access to information</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Computer simulation</topic><topic>Connectivity</topic><topic>Constraints</topic><topic>Convergence</topic><topic>Convex analysis</topic><topic>Cost function</topic><topic>Cybernetics</topic><topic>Inequalities (Mathematics)</topic><topic>Mathematical optimization</topic><topic>Methods</topic><topic>Multi-agent systems</topic><topic>Multiagent systems</topic><topic>Nonlinear programming</topic><topic>Optimization</topic><topic>Penalty function</topic><topic>Signal processing</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Changzhi</creatorcontrib><creatorcontrib>Wu, Zhiyou</creatorcontrib><creatorcontrib>Gu, Chuanye</creatorcontrib><creatorcontrib>Li, Jueyou</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>قاعدة العلوم الإنسانية - e-Marefa Humanities</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Complexity (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Changzhi</au><au>Wu, Zhiyou</au><au>Gu, Chuanye</au><au>Li, Jueyou</au><au>De Domenico, Manlio</au><au>Manlio De Domenico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Optimization Methods for Nonconvex Problems with Inequality Constraints over Time-Varying Networks</atitle><jtitle>Complexity (New York, N.Y.)</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1076-2787</issn><eissn>1099-0526</eissn><abstract>Network-structured optimization problems are found widely in engineering applications. In this paper, we investigate a nonconvex distributed optimization problem with inequality constraints associated with a time-varying multiagent network, in which each agent is allowed to locally access its own cost function and collaboratively minimize a sum of nonconvex cost functions for all the agents in the network. Based on successive convex approximation techniques, we first approximate locally the nonconvex problem by a sequence of strongly convex constrained subproblems. In order to realize distributed computation, we then exploit the exact penalty function method to transform the sequence of convex constrained subproblems into unconstrained ones. Finally, a fully distributed method is designed to solve the unconstrained subproblems. The convergence of the proposed algorithm is rigorously established, which shows that the algorithm can converge asymptotically to a stationary solution of the problem under consideration. Several simulation results are illustrated to show the performance of the proposed method.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2017/3610283</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3537-1162</orcidid><orcidid>https://orcid.org/0000-0002-2276-6862</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1076-2787
ispartof Complexity (New York, N.Y.), 2017-01, Vol.2017 (2017), p.1-10
issn 1076-2787
1099-0526
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b0f768ea6f4744cd99963cff7842c93b
source Wiley_OA刊
subjects Access to information
Algorithms
Analysis
Computer simulation
Connectivity
Constraints
Convergence
Convex analysis
Cost function
Cybernetics
Inequalities (Mathematics)
Mathematical optimization
Methods
Multi-agent systems
Multiagent systems
Nonlinear programming
Optimization
Penalty function
Signal processing
Wireless networks
title Distributed Optimization Methods for Nonconvex Problems with Inequality Constraints over Time-Varying Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A14%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Optimization%20Methods%20for%20Nonconvex%20Problems%20with%20Inequality%20Constraints%20over%20Time-Varying%20Networks&rft.jtitle=Complexity%20(New%20York,%20N.Y.)&rft.au=Wu,%20Changzhi&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1076-2787&rft.eissn=1099-0526&rft_id=info:doi/10.1155/2017/3610283&rft_dat=%3Cgale_doaj_%3EA547622184%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-2a830606be7a22799d78bcb8b5b9ed6ff79cd9f6019f8386e86444ed60e188dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2010874729&rft_id=info:pmid/&rft_galeid=A547622184&rfr_iscdi=true