Loading…

Fuel loads acquired at a stopover site influence the pace of intercontinental migration in a boreal songbird

Long-distance migratory organisms are under strong selection to migrate quickly. Stopovers demand more time than flying and are used by individuals to refuel during migration, but the effect of fuel loads (fat) acquired at stopover sites on the subsequent pace of migration has not been quantified. W...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2017-06, Vol.7 (1), p.3405-11, Article 3405
Main Authors: Gómez, Camila, Bayly, Nicholas J., Norris, D. Ryan, Mackenzie, Stuart A., Rosenberg, Kenneth V., Taylor, Philip D., Hobson, Keith A., Daniel Cadena, Carlos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Long-distance migratory organisms are under strong selection to migrate quickly. Stopovers demand more time than flying and are used by individuals to refuel during migration, but the effect of fuel loads (fat) acquired at stopover sites on the subsequent pace of migration has not been quantified. We studied stopover behaviour of Grey-cheeked Thrush ( Catharus minimus ) at a site in northern Colombia and then tracked their migration using an intercontinental radio-telemetry array. Tracking confirmed long-distance flights of more than 3000 km, highlighting the key importance of a single stopover site to the migration strategy of this species. Our results suggest that these songbirds behave as time-minimizers as predicted by optimal migration theory, and that fuel loads acquired at this South American stopover site, together with departure date, carry-over to influence the pace of migration, contributing to differences in travel time of up to 30 days in birds subsequently detected in the U. S. and Canada. Such variation in the pace of migration arising from a single stopover site, likely has important fitness consequences and suggests that identifying important fuelling sites will be essential to effectively conserve migratory species.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-03503-4