Loading…

Design and performance analysis of small-sized multiband microstrip patch antenna on custom-made biopolymer substrate

This paper presents a simple design analysis and performance evaluation of rectangular, slotted, microstrip feed patch antenna. The design processes are performed by employing the finite element method (FEM)-based commercial EM simulation software High-Frequency Structural Simulator (HFSS). The prop...

Full description

Saved in:
Bibliographic Details
Published in:Science and engineering of composite materials 2016-11, Vol.23 (6), p.729-735
Main Authors: Ahsan, Md Rezwanul, Islam, Mohammad Tariqul, Ullah, Mohammad Habib
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c426t-a90b866a7ba70e0c2d65b36382fc0044d6f049a46dd345b5c246d5a4c5f0919a3
cites cdi_FETCH-LOGICAL-c426t-a90b866a7ba70e0c2d65b36382fc0044d6f049a46dd345b5c246d5a4c5f0919a3
container_end_page 735
container_issue 6
container_start_page 729
container_title Science and engineering of composite materials
container_volume 23
creator Ahsan, Md Rezwanul
Islam, Mohammad Tariqul
Ullah, Mohammad Habib
description This paper presents a simple design analysis and performance evaluation of rectangular, slotted, microstrip feed patch antenna. The design processes are performed by employing the finite element method (FEM)-based commercial EM simulation software High-Frequency Structural Simulator (HFSS). The proposed multiband antenna is composed of a rectangular, slotted radiator formed with four arc slots and central square slot, reduced ground plane, and microstrip line for feeding. The patch antenna is excited through the standard 50 Ω RF transmission line, impedance-compliant SMA connector that is connected to the microstrip line. The optimal parametric dimensions from the numerical simulations are used for constructing the physical prototype on a custom-made, ceramic-filled biopolymer substrate of =10.0. Based on simulation results, the experimental data are collected, analyzed, and compared; the surface current distributions on the patch, gain, and radiation patterns are critically discussed. The measured results show the impedance bandwidths for S11 less than -10 dB are 712 MHz at 0.788 GHz band, 1.38 GHz at 3.34 GHz band, and 2.46 GHz at 8.01 GHz band. The good radiation pattern performances, almost stable gain over the bands, and appreciable bandwidths recommend the antenna for operating in RFID, WiMAX, and C/X-band applications.
doi_str_mv 10.1515/secm-2014-0409
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b1161d12e6f44f5aa3de0a16971cbf4f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b1161d12e6f44f5aa3de0a16971cbf4f</doaj_id><sourcerecordid>1865615448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-a90b866a7ba70e0c2d65b36382fc0044d6f049a46dd345b5c246d5a4c5f0919a3</originalsourceid><addsrcrecordid>eNptkcuLFDEQxhtRcFj36jngOWvePQEvsr4WFrzoOVReY4buTpukkfGvN-2IeLAuVQnf7yuobxheUnJHJZWva3AzZoQKTATRT4YDo5piwqV-OhzIqBmmjPPnw22tZ9JrFITz8TBs70JNpwXB4tEaSsxlhsWF_obpUlNFOaI6wzThmn4Gj-Ztasnu6jm5kmsraUUrNPetIy0sC6C8ILfVlmc8gw_Iprzm6TKHgupmOwAtvBieRZhquP3Tb4avH95_uf-EHz9_fLh_-4idYKph0MQelYLRwkgCccwrabniRxYdIUJ4FYnQIJT3XEgrHeujBOFkJJpq4DfDw9XXZzibtaQZysVkSOb3Ry4nA6UlNwVjKVXUUxZUFCJKAO4DAar0SJ2NInavV1evteTvW6jNnPNW-pmqoUclFZVCHLvq7qraj1NLiH-3UmL2pMyelNmTMntSHXhzBX7A1ELx4VS2Sx_-cf8vyLgamea_AAKhnIc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865615448</pqid></control><display><type>article</type><title>Design and performance analysis of small-sized multiband microstrip patch antenna on custom-made biopolymer substrate</title><source>Walter De Gruyter: Open Access Journals</source><creator>Ahsan, Md Rezwanul ; Islam, Mohammad Tariqul ; Ullah, Mohammad Habib</creator><creatorcontrib>Ahsan, Md Rezwanul ; Islam, Mohammad Tariqul ; Ullah, Mohammad Habib</creatorcontrib><description>This paper presents a simple design analysis and performance evaluation of rectangular, slotted, microstrip feed patch antenna. The design processes are performed by employing the finite element method (FEM)-based commercial EM simulation software High-Frequency Structural Simulator (HFSS). The proposed multiband antenna is composed of a rectangular, slotted radiator formed with four arc slots and central square slot, reduced ground plane, and microstrip line for feeding. The patch antenna is excited through the standard 50 Ω RF transmission line, impedance-compliant SMA connector that is connected to the microstrip line. The optimal parametric dimensions from the numerical simulations are used for constructing the physical prototype on a custom-made, ceramic-filled biopolymer substrate of =10.0. Based on simulation results, the experimental data are collected, analyzed, and compared; the surface current distributions on the patch, gain, and radiation patterns are critically discussed. The measured results show the impedance bandwidths for S11 less than -10 dB are 712 MHz at 0.788 GHz band, 1.38 GHz at 3.34 GHz band, and 2.46 GHz at 8.01 GHz band. The good radiation pattern performances, almost stable gain over the bands, and appreciable bandwidths recommend the antenna for operating in RFID, WiMAX, and C/X-band applications.</description><identifier>ISSN: 0792-1233</identifier><identifier>EISSN: 2191-0359</identifier><identifier>DOI: 10.1515/secm-2014-0409</identifier><language>eng</language><publisher>Berlin: De Gruyter</publisher><subject>Antenna design ; biopolymer substrate ; Biopolymers ; C/X-band applications ; Computer simulation ; Design analysis ; Finite element method ; Ground plane ; Impedance ; microstrip antenna ; Microstrip transmission lines ; multiband antenna ; Patch antennas ; Performance evaluation ; Radiators ; RFID ; Substrates ; Superhigh frequencies ; Transmission lines ; WiMAX</subject><ispartof>Science and engineering of composite materials, 2016-11, Vol.23 (6), p.729-735</ispartof><rights>Copyright Walter de Gruyter GmbH Nov 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-a90b866a7ba70e0c2d65b36382fc0044d6f049a46dd345b5c246d5a4c5f0919a3</citedby><cites>FETCH-LOGICAL-c426t-a90b866a7ba70e0c2d65b36382fc0044d6f049a46dd345b5c246d5a4c5f0919a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/secm-2014-0409/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/secm-2014-0409/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,67158,68942</link.rule.ids></links><search><creatorcontrib>Ahsan, Md Rezwanul</creatorcontrib><creatorcontrib>Islam, Mohammad Tariqul</creatorcontrib><creatorcontrib>Ullah, Mohammad Habib</creatorcontrib><title>Design and performance analysis of small-sized multiband microstrip patch antenna on custom-made biopolymer substrate</title><title>Science and engineering of composite materials</title><description>This paper presents a simple design analysis and performance evaluation of rectangular, slotted, microstrip feed patch antenna. The design processes are performed by employing the finite element method (FEM)-based commercial EM simulation software High-Frequency Structural Simulator (HFSS). The proposed multiband antenna is composed of a rectangular, slotted radiator formed with four arc slots and central square slot, reduced ground plane, and microstrip line for feeding. The patch antenna is excited through the standard 50 Ω RF transmission line, impedance-compliant SMA connector that is connected to the microstrip line. The optimal parametric dimensions from the numerical simulations are used for constructing the physical prototype on a custom-made, ceramic-filled biopolymer substrate of =10.0. Based on simulation results, the experimental data are collected, analyzed, and compared; the surface current distributions on the patch, gain, and radiation patterns are critically discussed. The measured results show the impedance bandwidths for S11 less than -10 dB are 712 MHz at 0.788 GHz band, 1.38 GHz at 3.34 GHz band, and 2.46 GHz at 8.01 GHz band. The good radiation pattern performances, almost stable gain over the bands, and appreciable bandwidths recommend the antenna for operating in RFID, WiMAX, and C/X-band applications.</description><subject>Antenna design</subject><subject>biopolymer substrate</subject><subject>Biopolymers</subject><subject>C/X-band applications</subject><subject>Computer simulation</subject><subject>Design analysis</subject><subject>Finite element method</subject><subject>Ground plane</subject><subject>Impedance</subject><subject>microstrip antenna</subject><subject>Microstrip transmission lines</subject><subject>multiband antenna</subject><subject>Patch antennas</subject><subject>Performance evaluation</subject><subject>Radiators</subject><subject>RFID</subject><subject>Substrates</subject><subject>Superhigh frequencies</subject><subject>Transmission lines</subject><subject>WiMAX</subject><issn>0792-1233</issn><issn>2191-0359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkcuLFDEQxhtRcFj36jngOWvePQEvsr4WFrzoOVReY4buTpukkfGvN-2IeLAuVQnf7yuobxheUnJHJZWva3AzZoQKTATRT4YDo5piwqV-OhzIqBmmjPPnw22tZ9JrFITz8TBs70JNpwXB4tEaSsxlhsWF_obpUlNFOaI6wzThmn4Gj-Ztasnu6jm5kmsraUUrNPetIy0sC6C8ILfVlmc8gw_Iprzm6TKHgupmOwAtvBieRZhquP3Tb4avH95_uf-EHz9_fLh_-4idYKph0MQelYLRwkgCccwrabniRxYdIUJ4FYnQIJT3XEgrHeujBOFkJJpq4DfDw9XXZzibtaQZysVkSOb3Ry4nA6UlNwVjKVXUUxZUFCJKAO4DAar0SJ2NInavV1evteTvW6jNnPNW-pmqoUclFZVCHLvq7qraj1NLiH-3UmL2pMyelNmTMntSHXhzBX7A1ELx4VS2Sx_-cf8vyLgamea_AAKhnIc</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Ahsan, Md Rezwanul</creator><creator>Islam, Mohammad Tariqul</creator><creator>Ullah, Mohammad Habib</creator><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>DOA</scope></search><sort><creationdate>20161101</creationdate><title>Design and performance analysis of small-sized multiband microstrip patch antenna on custom-made biopolymer substrate</title><author>Ahsan, Md Rezwanul ; Islam, Mohammad Tariqul ; Ullah, Mohammad Habib</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-a90b866a7ba70e0c2d65b36382fc0044d6f049a46dd345b5c246d5a4c5f0919a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Antenna design</topic><topic>biopolymer substrate</topic><topic>Biopolymers</topic><topic>C/X-band applications</topic><topic>Computer simulation</topic><topic>Design analysis</topic><topic>Finite element method</topic><topic>Ground plane</topic><topic>Impedance</topic><topic>microstrip antenna</topic><topic>Microstrip transmission lines</topic><topic>multiband antenna</topic><topic>Patch antennas</topic><topic>Performance evaluation</topic><topic>Radiators</topic><topic>RFID</topic><topic>Substrates</topic><topic>Superhigh frequencies</topic><topic>Transmission lines</topic><topic>WiMAX</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahsan, Md Rezwanul</creatorcontrib><creatorcontrib>Islam, Mohammad Tariqul</creatorcontrib><creatorcontrib>Ullah, Mohammad Habib</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Science and engineering of composite materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahsan, Md Rezwanul</au><au>Islam, Mohammad Tariqul</au><au>Ullah, Mohammad Habib</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and performance analysis of small-sized multiband microstrip patch antenna on custom-made biopolymer substrate</atitle><jtitle>Science and engineering of composite materials</jtitle><date>2016-11-01</date><risdate>2016</risdate><volume>23</volume><issue>6</issue><spage>729</spage><epage>735</epage><pages>729-735</pages><issn>0792-1233</issn><eissn>2191-0359</eissn><abstract>This paper presents a simple design analysis and performance evaluation of rectangular, slotted, microstrip feed patch antenna. The design processes are performed by employing the finite element method (FEM)-based commercial EM simulation software High-Frequency Structural Simulator (HFSS). The proposed multiband antenna is composed of a rectangular, slotted radiator formed with four arc slots and central square slot, reduced ground plane, and microstrip line for feeding. The patch antenna is excited through the standard 50 Ω RF transmission line, impedance-compliant SMA connector that is connected to the microstrip line. The optimal parametric dimensions from the numerical simulations are used for constructing the physical prototype on a custom-made, ceramic-filled biopolymer substrate of =10.0. Based on simulation results, the experimental data are collected, analyzed, and compared; the surface current distributions on the patch, gain, and radiation patterns are critically discussed. The measured results show the impedance bandwidths for S11 less than -10 dB are 712 MHz at 0.788 GHz band, 1.38 GHz at 3.34 GHz band, and 2.46 GHz at 8.01 GHz band. The good radiation pattern performances, almost stable gain over the bands, and appreciable bandwidths recommend the antenna for operating in RFID, WiMAX, and C/X-band applications.</abstract><cop>Berlin</cop><pub>De Gruyter</pub><doi>10.1515/secm-2014-0409</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0792-1233
ispartof Science and engineering of composite materials, 2016-11, Vol.23 (6), p.729-735
issn 0792-1233
2191-0359
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b1161d12e6f44f5aa3de0a16971cbf4f
source Walter De Gruyter: Open Access Journals
subjects Antenna design
biopolymer substrate
Biopolymers
C/X-band applications
Computer simulation
Design analysis
Finite element method
Ground plane
Impedance
microstrip antenna
Microstrip transmission lines
multiband antenna
Patch antennas
Performance evaluation
Radiators
RFID
Substrates
Superhigh frequencies
Transmission lines
WiMAX
title Design and performance analysis of small-sized multiband microstrip patch antenna on custom-made biopolymer substrate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A16%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20performance%20analysis%20of%20small-sized%20multiband%20microstrip%20patch%20antenna%20on%20custom-made%20biopolymer%20substrate&rft.jtitle=Science%20and%20engineering%20of%20composite%20materials&rft.au=Ahsan,%20Md%20Rezwanul&rft.date=2016-11-01&rft.volume=23&rft.issue=6&rft.spage=729&rft.epage=735&rft.pages=729-735&rft.issn=0792-1233&rft.eissn=2191-0359&rft_id=info:doi/10.1515/secm-2014-0409&rft_dat=%3Cproquest_doaj_%3E1865615448%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-a90b866a7ba70e0c2d65b36382fc0044d6f049a46dd345b5c246d5a4c5f0919a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1865615448&rft_id=info:pmid/&rfr_iscdi=true