Loading…
Analytical Approximation-Based Approach for Passenger Flow Control Strategy in Oversaturated Urban Rail Transit Systems
Focusing on a heavily congested urban rail corridor, this study investigates the passenger flow control strategy optimization problem from a mesoscopic perspective to reduce platform congestion and enhance service quality. Based on a quadratic functional approximation for passenger arrival rates, an...
Saved in:
Published in: | Journal of advanced transportation 2023-06, Vol.2023, p.1-21 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-761e89ab4dae9a6bc2b7b5fe70aa9c0dcaec30fdc2dc8d475be6fd8c811d5d553 |
container_end_page | 21 |
container_issue | |
container_start_page | 1 |
container_title | Journal of advanced transportation |
container_volume | 2023 |
creator | Zhu, Qian Zhu, Xiaoning Shang, Pan Meng, Lingyun |
description | Focusing on a heavily congested urban rail corridor, this study investigates the passenger flow control strategy optimization problem from a mesoscopic perspective to reduce platform congestion and enhance service quality. Based on a quadratic functional approximation for passenger arrival rates, an analytical formula for calculating passenger waiting time is derived based on the classic deterministic queueing theory. We formulate the problem as a continuous nonlinear programming model to minimize the total passenger waiting time within transportation capacity constraints. A Lagrangian relaxation approach effectively transforms the original complex problem into an unconstrained minimization program. The analytical solution relating to optimal flow control strategy is derived by directly solving the unconstrained program. To further provide an integrated optimization framework from both the supply and demand sides, we extend the abovementioned passenger flow control optimization model into an integrated mixed-integer nonlinear programming model to jointly optimize the passenger-flow control strategy and train frequency setting. Numerical examples are presented to demonstrate the applicability and effectiveness of the proposed models. The computational results show that the produced high-quality passenger flow control strategy significantly reduces total passenger delay. |
doi_str_mv | 10.1155/2023/3513517 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b1323b9dd30e49c586cde9e9d82c2dfe</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A755558725</galeid><doaj_id>oai_doaj_org_article_b1323b9dd30e49c586cde9e9d82c2dfe</doaj_id><sourcerecordid>A755558725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-761e89ab4dae9a6bc2b7b5fe70aa9c0dcaec30fdc2dc8d475be6fd8c811d5d553</originalsourceid><addsrcrecordid>eNp9kl9v0zAUxSMEEmXwxgewxCNk8584iR9LxWDSpCG2PUc39k3qKrWL7a702-OSCfFQYVu2dPS7R75HtyjeM3rJmJRXnHJxJSTLp3lRLDiteCmYki-LBWWqKeuGq9fFmxg3lAolVbUoDksH0zFZDRNZ7nbB_7JbSNa78jNENLMGek0GH8h3iBHdiIFcT_5AVt6l4CdynwIkHI_EOnL3hCFC2p8UQx5DD478ADuRhwAu2kTujzHhNr4tXg0wRXz3_F4Uj9dfHlbfytu7rzer5W2pq6ZKZVMzbBX0lQFUUPea900vB2wogNLUaEAt6GA0N7o1VSN7rAfT6pYxI42U4qK4mX2Nh023C7m7cOw82O6P4MPYQcjtT9j1THDRK2MExUpp2dbaoEJlWp7tB8xeH2avHMnPPcbUbfw-5Pxix1vBGROi5pkqZ2qEbGrd4HM8ekSHASbvcLBZXjYyr7bhpx9enuHzNri1-mzBp38K-n20DmO-oh3XKY6wj_EsroOPMeDwNwVGu9PYdKex6Z7HJuMfZ3xtnYGD_T_9G1P9w9c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2832113362</pqid></control><display><type>article</type><title>Analytical Approximation-Based Approach for Passenger Flow Control Strategy in Oversaturated Urban Rail Transit Systems</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>ABI/INFORM Global</source><creator>Zhu, Qian ; Zhu, Xiaoning ; Shang, Pan ; Meng, Lingyun</creator><contributor>Esztergár-Kiss, Domokos ; Domokos Esztergár-Kiss</contributor><creatorcontrib>Zhu, Qian ; Zhu, Xiaoning ; Shang, Pan ; Meng, Lingyun ; Esztergár-Kiss, Domokos ; Domokos Esztergár-Kiss</creatorcontrib><description>Focusing on a heavily congested urban rail corridor, this study investigates the passenger flow control strategy optimization problem from a mesoscopic perspective to reduce platform congestion and enhance service quality. Based on a quadratic functional approximation for passenger arrival rates, an analytical formula for calculating passenger waiting time is derived based on the classic deterministic queueing theory. We formulate the problem as a continuous nonlinear programming model to minimize the total passenger waiting time within transportation capacity constraints. A Lagrangian relaxation approach effectively transforms the original complex problem into an unconstrained minimization program. The analytical solution relating to optimal flow control strategy is derived by directly solving the unconstrained program. To further provide an integrated optimization framework from both the supply and demand sides, we extend the abovementioned passenger flow control optimization model into an integrated mixed-integer nonlinear programming model to jointly optimize the passenger-flow control strategy and train frequency setting. Numerical examples are presented to demonstrate the applicability and effectiveness of the proposed models. The computational results show that the produced high-quality passenger flow control strategy significantly reduces total passenger delay.</description><identifier>ISSN: 0197-6729</identifier><identifier>EISSN: 2042-3195</identifier><identifier>DOI: 10.1155/2023/3513517</identifier><language>eng</language><publisher>London: Hindawi</publisher><subject>Algorithms ; Analysis ; Approximation ; Collaboration ; Design ; Efficiency ; Exact solutions ; Flow control ; Frequency setting ; Heuristic ; Integer programming ; Light rail transit ; Linear programming ; Mathematical analysis ; Mathematical programming ; Mixed integer ; Nonlinear programming ; Optimization ; Optimization models ; Passengers ; Queuing theory ; Transportation ; Transportation corridors ; Urban rail</subject><ispartof>Journal of advanced transportation, 2023-06, Vol.2023, p.1-21</ispartof><rights>Copyright © 2023 Qian Zhu et al.</rights><rights>COPYRIGHT 2023 John Wiley & Sons, Inc.</rights><rights>Copyright © 2023 Qian Zhu et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c474t-761e89ab4dae9a6bc2b7b5fe70aa9c0dcaec30fdc2dc8d475be6fd8c811d5d553</cites><orcidid>0000-0002-7754-3260 ; 0000-0002-3553-784X ; 0000-0002-0298-3827 ; 0000-0003-1715-456X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2832113362/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2832113362?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11688,25753,27924,27925,36060,37012,44363,44590,74895,75126</link.rule.ids></links><search><contributor>Esztergár-Kiss, Domokos</contributor><contributor>Domokos Esztergár-Kiss</contributor><creatorcontrib>Zhu, Qian</creatorcontrib><creatorcontrib>Zhu, Xiaoning</creatorcontrib><creatorcontrib>Shang, Pan</creatorcontrib><creatorcontrib>Meng, Lingyun</creatorcontrib><title>Analytical Approximation-Based Approach for Passenger Flow Control Strategy in Oversaturated Urban Rail Transit Systems</title><title>Journal of advanced transportation</title><description>Focusing on a heavily congested urban rail corridor, this study investigates the passenger flow control strategy optimization problem from a mesoscopic perspective to reduce platform congestion and enhance service quality. Based on a quadratic functional approximation for passenger arrival rates, an analytical formula for calculating passenger waiting time is derived based on the classic deterministic queueing theory. We formulate the problem as a continuous nonlinear programming model to minimize the total passenger waiting time within transportation capacity constraints. A Lagrangian relaxation approach effectively transforms the original complex problem into an unconstrained minimization program. The analytical solution relating to optimal flow control strategy is derived by directly solving the unconstrained program. To further provide an integrated optimization framework from both the supply and demand sides, we extend the abovementioned passenger flow control optimization model into an integrated mixed-integer nonlinear programming model to jointly optimize the passenger-flow control strategy and train frequency setting. Numerical examples are presented to demonstrate the applicability and effectiveness of the proposed models. The computational results show that the produced high-quality passenger flow control strategy significantly reduces total passenger delay.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Approximation</subject><subject>Collaboration</subject><subject>Design</subject><subject>Efficiency</subject><subject>Exact solutions</subject><subject>Flow control</subject><subject>Frequency setting</subject><subject>Heuristic</subject><subject>Integer programming</subject><subject>Light rail transit</subject><subject>Linear programming</subject><subject>Mathematical analysis</subject><subject>Mathematical programming</subject><subject>Mixed integer</subject><subject>Nonlinear programming</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>Passengers</subject><subject>Queuing theory</subject><subject>Transportation</subject><subject>Transportation corridors</subject><subject>Urban rail</subject><issn>0197-6729</issn><issn>2042-3195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kl9v0zAUxSMEEmXwxgewxCNk8584iR9LxWDSpCG2PUc39k3qKrWL7a702-OSCfFQYVu2dPS7R75HtyjeM3rJmJRXnHJxJSTLp3lRLDiteCmYki-LBWWqKeuGq9fFmxg3lAolVbUoDksH0zFZDRNZ7nbB_7JbSNa78jNENLMGek0GH8h3iBHdiIFcT_5AVt6l4CdynwIkHI_EOnL3hCFC2p8UQx5DD478ADuRhwAu2kTujzHhNr4tXg0wRXz3_F4Uj9dfHlbfytu7rzer5W2pq6ZKZVMzbBX0lQFUUPea900vB2wogNLUaEAt6GA0N7o1VSN7rAfT6pYxI42U4qK4mX2Nh023C7m7cOw82O6P4MPYQcjtT9j1THDRK2MExUpp2dbaoEJlWp7tB8xeH2avHMnPPcbUbfw-5Pxix1vBGROi5pkqZ2qEbGrd4HM8ekSHASbvcLBZXjYyr7bhpx9enuHzNri1-mzBp38K-n20DmO-oh3XKY6wj_EsroOPMeDwNwVGu9PYdKex6Z7HJuMfZ3xtnYGD_T_9G1P9w9c</recordid><startdate>20230623</startdate><enddate>20230623</enddate><creator>Zhu, Qian</creator><creator>Zhu, Xiaoning</creator><creator>Shang, Pan</creator><creator>Meng, Lingyun</creator><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><general>Hindawi-Wiley</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>3V.</scope><scope>7ST</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7754-3260</orcidid><orcidid>https://orcid.org/0000-0002-3553-784X</orcidid><orcidid>https://orcid.org/0000-0002-0298-3827</orcidid><orcidid>https://orcid.org/0000-0003-1715-456X</orcidid></search><sort><creationdate>20230623</creationdate><title>Analytical Approximation-Based Approach for Passenger Flow Control Strategy in Oversaturated Urban Rail Transit Systems</title><author>Zhu, Qian ; Zhu, Xiaoning ; Shang, Pan ; Meng, Lingyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-761e89ab4dae9a6bc2b7b5fe70aa9c0dcaec30fdc2dc8d475be6fd8c811d5d553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Approximation</topic><topic>Collaboration</topic><topic>Design</topic><topic>Efficiency</topic><topic>Exact solutions</topic><topic>Flow control</topic><topic>Frequency setting</topic><topic>Heuristic</topic><topic>Integer programming</topic><topic>Light rail transit</topic><topic>Linear programming</topic><topic>Mathematical analysis</topic><topic>Mathematical programming</topic><topic>Mixed integer</topic><topic>Nonlinear programming</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>Passengers</topic><topic>Queuing theory</topic><topic>Transportation</topic><topic>Transportation corridors</topic><topic>Urban rail</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Qian</creatorcontrib><creatorcontrib>Zhu, Xiaoning</creatorcontrib><creatorcontrib>Shang, Pan</creatorcontrib><creatorcontrib>Meng, Lingyun</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Gale Business Insights</collection><collection>Business Insights: Essentials</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of advanced transportation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Qian</au><au>Zhu, Xiaoning</au><au>Shang, Pan</au><au>Meng, Lingyun</au><au>Esztergár-Kiss, Domokos</au><au>Domokos Esztergár-Kiss</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Approximation-Based Approach for Passenger Flow Control Strategy in Oversaturated Urban Rail Transit Systems</atitle><jtitle>Journal of advanced transportation</jtitle><date>2023-06-23</date><risdate>2023</risdate><volume>2023</volume><spage>1</spage><epage>21</epage><pages>1-21</pages><issn>0197-6729</issn><eissn>2042-3195</eissn><abstract>Focusing on a heavily congested urban rail corridor, this study investigates the passenger flow control strategy optimization problem from a mesoscopic perspective to reduce platform congestion and enhance service quality. Based on a quadratic functional approximation for passenger arrival rates, an analytical formula for calculating passenger waiting time is derived based on the classic deterministic queueing theory. We formulate the problem as a continuous nonlinear programming model to minimize the total passenger waiting time within transportation capacity constraints. A Lagrangian relaxation approach effectively transforms the original complex problem into an unconstrained minimization program. The analytical solution relating to optimal flow control strategy is derived by directly solving the unconstrained program. To further provide an integrated optimization framework from both the supply and demand sides, we extend the abovementioned passenger flow control optimization model into an integrated mixed-integer nonlinear programming model to jointly optimize the passenger-flow control strategy and train frequency setting. Numerical examples are presented to demonstrate the applicability and effectiveness of the proposed models. The computational results show that the produced high-quality passenger flow control strategy significantly reduces total passenger delay.</abstract><cop>London</cop><pub>Hindawi</pub><doi>10.1155/2023/3513517</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-7754-3260</orcidid><orcidid>https://orcid.org/0000-0002-3553-784X</orcidid><orcidid>https://orcid.org/0000-0002-0298-3827</orcidid><orcidid>https://orcid.org/0000-0003-1715-456X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0197-6729 |
ispartof | Journal of advanced transportation, 2023-06, Vol.2023, p.1-21 |
issn | 0197-6729 2042-3195 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b1323b9dd30e49c586cde9e9d82c2dfe |
source | Wiley-Blackwell Open Access Collection; Publicly Available Content Database (Proquest) (PQ_SDU_P3); ABI/INFORM Global |
subjects | Algorithms Analysis Approximation Collaboration Design Efficiency Exact solutions Flow control Frequency setting Heuristic Integer programming Light rail transit Linear programming Mathematical analysis Mathematical programming Mixed integer Nonlinear programming Optimization Optimization models Passengers Queuing theory Transportation Transportation corridors Urban rail |
title | Analytical Approximation-Based Approach for Passenger Flow Control Strategy in Oversaturated Urban Rail Transit Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A19%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Approximation-Based%20Approach%20for%20Passenger%20Flow%20Control%20Strategy%20in%20Oversaturated%20Urban%20Rail%20Transit%20Systems&rft.jtitle=Journal%20of%20advanced%20transportation&rft.au=Zhu,%20Qian&rft.date=2023-06-23&rft.volume=2023&rft.spage=1&rft.epage=21&rft.pages=1-21&rft.issn=0197-6729&rft.eissn=2042-3195&rft_id=info:doi/10.1155/2023/3513517&rft_dat=%3Cgale_doaj_%3EA755558725%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-761e89ab4dae9a6bc2b7b5fe70aa9c0dcaec30fdc2dc8d475be6fd8c811d5d553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2832113362&rft_id=info:pmid/&rft_galeid=A755558725&rfr_iscdi=true |