Loading…

Analytical Approximation-Based Approach for Passenger Flow Control Strategy in Oversaturated Urban Rail Transit Systems

Focusing on a heavily congested urban rail corridor, this study investigates the passenger flow control strategy optimization problem from a mesoscopic perspective to reduce platform congestion and enhance service quality. Based on a quadratic functional approximation for passenger arrival rates, an...

Full description

Saved in:
Bibliographic Details
Published in:Journal of advanced transportation 2023-06, Vol.2023, p.1-21
Main Authors: Zhu, Qian, Zhu, Xiaoning, Shang, Pan, Meng, Lingyun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c474t-761e89ab4dae9a6bc2b7b5fe70aa9c0dcaec30fdc2dc8d475be6fd8c811d5d553
container_end_page 21
container_issue
container_start_page 1
container_title Journal of advanced transportation
container_volume 2023
creator Zhu, Qian
Zhu, Xiaoning
Shang, Pan
Meng, Lingyun
description Focusing on a heavily congested urban rail corridor, this study investigates the passenger flow control strategy optimization problem from a mesoscopic perspective to reduce platform congestion and enhance service quality. Based on a quadratic functional approximation for passenger arrival rates, an analytical formula for calculating passenger waiting time is derived based on the classic deterministic queueing theory. We formulate the problem as a continuous nonlinear programming model to minimize the total passenger waiting time within transportation capacity constraints. A Lagrangian relaxation approach effectively transforms the original complex problem into an unconstrained minimization program. The analytical solution relating to optimal flow control strategy is derived by directly solving the unconstrained program. To further provide an integrated optimization framework from both the supply and demand sides, we extend the abovementioned passenger flow control optimization model into an integrated mixed-integer nonlinear programming model to jointly optimize the passenger-flow control strategy and train frequency setting. Numerical examples are presented to demonstrate the applicability and effectiveness of the proposed models. The computational results show that the produced high-quality passenger flow control strategy significantly reduces total passenger delay.
doi_str_mv 10.1155/2023/3513517
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b1323b9dd30e49c586cde9e9d82c2dfe</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A755558725</galeid><doaj_id>oai_doaj_org_article_b1323b9dd30e49c586cde9e9d82c2dfe</doaj_id><sourcerecordid>A755558725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-761e89ab4dae9a6bc2b7b5fe70aa9c0dcaec30fdc2dc8d475be6fd8c811d5d553</originalsourceid><addsrcrecordid>eNp9kl9v0zAUxSMEEmXwxgewxCNk8584iR9LxWDSpCG2PUc39k3qKrWL7a702-OSCfFQYVu2dPS7R75HtyjeM3rJmJRXnHJxJSTLp3lRLDiteCmYki-LBWWqKeuGq9fFmxg3lAolVbUoDksH0zFZDRNZ7nbB_7JbSNa78jNENLMGek0GH8h3iBHdiIFcT_5AVt6l4CdynwIkHI_EOnL3hCFC2p8UQx5DD478ADuRhwAu2kTujzHhNr4tXg0wRXz3_F4Uj9dfHlbfytu7rzer5W2pq6ZKZVMzbBX0lQFUUPea900vB2wogNLUaEAt6GA0N7o1VSN7rAfT6pYxI42U4qK4mX2Nh023C7m7cOw82O6P4MPYQcjtT9j1THDRK2MExUpp2dbaoEJlWp7tB8xeH2avHMnPPcbUbfw-5Pxix1vBGROi5pkqZ2qEbGrd4HM8ekSHASbvcLBZXjYyr7bhpx9enuHzNri1-mzBp38K-n20DmO-oh3XKY6wj_EsroOPMeDwNwVGu9PYdKex6Z7HJuMfZ3xtnYGD_T_9G1P9w9c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2832113362</pqid></control><display><type>article</type><title>Analytical Approximation-Based Approach for Passenger Flow Control Strategy in Oversaturated Urban Rail Transit Systems</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>ABI/INFORM Global</source><creator>Zhu, Qian ; Zhu, Xiaoning ; Shang, Pan ; Meng, Lingyun</creator><contributor>Esztergár-Kiss, Domokos ; Domokos Esztergár-Kiss</contributor><creatorcontrib>Zhu, Qian ; Zhu, Xiaoning ; Shang, Pan ; Meng, Lingyun ; Esztergár-Kiss, Domokos ; Domokos Esztergár-Kiss</creatorcontrib><description>Focusing on a heavily congested urban rail corridor, this study investigates the passenger flow control strategy optimization problem from a mesoscopic perspective to reduce platform congestion and enhance service quality. Based on a quadratic functional approximation for passenger arrival rates, an analytical formula for calculating passenger waiting time is derived based on the classic deterministic queueing theory. We formulate the problem as a continuous nonlinear programming model to minimize the total passenger waiting time within transportation capacity constraints. A Lagrangian relaxation approach effectively transforms the original complex problem into an unconstrained minimization program. The analytical solution relating to optimal flow control strategy is derived by directly solving the unconstrained program. To further provide an integrated optimization framework from both the supply and demand sides, we extend the abovementioned passenger flow control optimization model into an integrated mixed-integer nonlinear programming model to jointly optimize the passenger-flow control strategy and train frequency setting. Numerical examples are presented to demonstrate the applicability and effectiveness of the proposed models. The computational results show that the produced high-quality passenger flow control strategy significantly reduces total passenger delay.</description><identifier>ISSN: 0197-6729</identifier><identifier>EISSN: 2042-3195</identifier><identifier>DOI: 10.1155/2023/3513517</identifier><language>eng</language><publisher>London: Hindawi</publisher><subject>Algorithms ; Analysis ; Approximation ; Collaboration ; Design ; Efficiency ; Exact solutions ; Flow control ; Frequency setting ; Heuristic ; Integer programming ; Light rail transit ; Linear programming ; Mathematical analysis ; Mathematical programming ; Mixed integer ; Nonlinear programming ; Optimization ; Optimization models ; Passengers ; Queuing theory ; Transportation ; Transportation corridors ; Urban rail</subject><ispartof>Journal of advanced transportation, 2023-06, Vol.2023, p.1-21</ispartof><rights>Copyright © 2023 Qian Zhu et al.</rights><rights>COPYRIGHT 2023 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2023 Qian Zhu et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c474t-761e89ab4dae9a6bc2b7b5fe70aa9c0dcaec30fdc2dc8d475be6fd8c811d5d553</cites><orcidid>0000-0002-7754-3260 ; 0000-0002-3553-784X ; 0000-0002-0298-3827 ; 0000-0003-1715-456X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2832113362/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2832113362?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11688,25753,27924,27925,36060,37012,44363,44590,74895,75126</link.rule.ids></links><search><contributor>Esztergár-Kiss, Domokos</contributor><contributor>Domokos Esztergár-Kiss</contributor><creatorcontrib>Zhu, Qian</creatorcontrib><creatorcontrib>Zhu, Xiaoning</creatorcontrib><creatorcontrib>Shang, Pan</creatorcontrib><creatorcontrib>Meng, Lingyun</creatorcontrib><title>Analytical Approximation-Based Approach for Passenger Flow Control Strategy in Oversaturated Urban Rail Transit Systems</title><title>Journal of advanced transportation</title><description>Focusing on a heavily congested urban rail corridor, this study investigates the passenger flow control strategy optimization problem from a mesoscopic perspective to reduce platform congestion and enhance service quality. Based on a quadratic functional approximation for passenger arrival rates, an analytical formula for calculating passenger waiting time is derived based on the classic deterministic queueing theory. We formulate the problem as a continuous nonlinear programming model to minimize the total passenger waiting time within transportation capacity constraints. A Lagrangian relaxation approach effectively transforms the original complex problem into an unconstrained minimization program. The analytical solution relating to optimal flow control strategy is derived by directly solving the unconstrained program. To further provide an integrated optimization framework from both the supply and demand sides, we extend the abovementioned passenger flow control optimization model into an integrated mixed-integer nonlinear programming model to jointly optimize the passenger-flow control strategy and train frequency setting. Numerical examples are presented to demonstrate the applicability and effectiveness of the proposed models. The computational results show that the produced high-quality passenger flow control strategy significantly reduces total passenger delay.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Approximation</subject><subject>Collaboration</subject><subject>Design</subject><subject>Efficiency</subject><subject>Exact solutions</subject><subject>Flow control</subject><subject>Frequency setting</subject><subject>Heuristic</subject><subject>Integer programming</subject><subject>Light rail transit</subject><subject>Linear programming</subject><subject>Mathematical analysis</subject><subject>Mathematical programming</subject><subject>Mixed integer</subject><subject>Nonlinear programming</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>Passengers</subject><subject>Queuing theory</subject><subject>Transportation</subject><subject>Transportation corridors</subject><subject>Urban rail</subject><issn>0197-6729</issn><issn>2042-3195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kl9v0zAUxSMEEmXwxgewxCNk8584iR9LxWDSpCG2PUc39k3qKrWL7a702-OSCfFQYVu2dPS7R75HtyjeM3rJmJRXnHJxJSTLp3lRLDiteCmYki-LBWWqKeuGq9fFmxg3lAolVbUoDksH0zFZDRNZ7nbB_7JbSNa78jNENLMGek0GH8h3iBHdiIFcT_5AVt6l4CdynwIkHI_EOnL3hCFC2p8UQx5DD478ADuRhwAu2kTujzHhNr4tXg0wRXz3_F4Uj9dfHlbfytu7rzer5W2pq6ZKZVMzbBX0lQFUUPea900vB2wogNLUaEAt6GA0N7o1VSN7rAfT6pYxI42U4qK4mX2Nh023C7m7cOw82O6P4MPYQcjtT9j1THDRK2MExUpp2dbaoEJlWp7tB8xeH2avHMnPPcbUbfw-5Pxix1vBGROi5pkqZ2qEbGrd4HM8ekSHASbvcLBZXjYyr7bhpx9enuHzNri1-mzBp38K-n20DmO-oh3XKY6wj_EsroOPMeDwNwVGu9PYdKex6Z7HJuMfZ3xtnYGD_T_9G1P9w9c</recordid><startdate>20230623</startdate><enddate>20230623</enddate><creator>Zhu, Qian</creator><creator>Zhu, Xiaoning</creator><creator>Shang, Pan</creator><creator>Meng, Lingyun</creator><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><general>Hindawi-Wiley</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>3V.</scope><scope>7ST</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7754-3260</orcidid><orcidid>https://orcid.org/0000-0002-3553-784X</orcidid><orcidid>https://orcid.org/0000-0002-0298-3827</orcidid><orcidid>https://orcid.org/0000-0003-1715-456X</orcidid></search><sort><creationdate>20230623</creationdate><title>Analytical Approximation-Based Approach for Passenger Flow Control Strategy in Oversaturated Urban Rail Transit Systems</title><author>Zhu, Qian ; Zhu, Xiaoning ; Shang, Pan ; Meng, Lingyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-761e89ab4dae9a6bc2b7b5fe70aa9c0dcaec30fdc2dc8d475be6fd8c811d5d553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Approximation</topic><topic>Collaboration</topic><topic>Design</topic><topic>Efficiency</topic><topic>Exact solutions</topic><topic>Flow control</topic><topic>Frequency setting</topic><topic>Heuristic</topic><topic>Integer programming</topic><topic>Light rail transit</topic><topic>Linear programming</topic><topic>Mathematical analysis</topic><topic>Mathematical programming</topic><topic>Mixed integer</topic><topic>Nonlinear programming</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>Passengers</topic><topic>Queuing theory</topic><topic>Transportation</topic><topic>Transportation corridors</topic><topic>Urban rail</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Qian</creatorcontrib><creatorcontrib>Zhu, Xiaoning</creatorcontrib><creatorcontrib>Shang, Pan</creatorcontrib><creatorcontrib>Meng, Lingyun</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Gale Business Insights</collection><collection>Business Insights: Essentials</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of advanced transportation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Qian</au><au>Zhu, Xiaoning</au><au>Shang, Pan</au><au>Meng, Lingyun</au><au>Esztergár-Kiss, Domokos</au><au>Domokos Esztergár-Kiss</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Approximation-Based Approach for Passenger Flow Control Strategy in Oversaturated Urban Rail Transit Systems</atitle><jtitle>Journal of advanced transportation</jtitle><date>2023-06-23</date><risdate>2023</risdate><volume>2023</volume><spage>1</spage><epage>21</epage><pages>1-21</pages><issn>0197-6729</issn><eissn>2042-3195</eissn><abstract>Focusing on a heavily congested urban rail corridor, this study investigates the passenger flow control strategy optimization problem from a mesoscopic perspective to reduce platform congestion and enhance service quality. Based on a quadratic functional approximation for passenger arrival rates, an analytical formula for calculating passenger waiting time is derived based on the classic deterministic queueing theory. We formulate the problem as a continuous nonlinear programming model to minimize the total passenger waiting time within transportation capacity constraints. A Lagrangian relaxation approach effectively transforms the original complex problem into an unconstrained minimization program. The analytical solution relating to optimal flow control strategy is derived by directly solving the unconstrained program. To further provide an integrated optimization framework from both the supply and demand sides, we extend the abovementioned passenger flow control optimization model into an integrated mixed-integer nonlinear programming model to jointly optimize the passenger-flow control strategy and train frequency setting. Numerical examples are presented to demonstrate the applicability and effectiveness of the proposed models. The computational results show that the produced high-quality passenger flow control strategy significantly reduces total passenger delay.</abstract><cop>London</cop><pub>Hindawi</pub><doi>10.1155/2023/3513517</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-7754-3260</orcidid><orcidid>https://orcid.org/0000-0002-3553-784X</orcidid><orcidid>https://orcid.org/0000-0002-0298-3827</orcidid><orcidid>https://orcid.org/0000-0003-1715-456X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0197-6729
ispartof Journal of advanced transportation, 2023-06, Vol.2023, p.1-21
issn 0197-6729
2042-3195
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b1323b9dd30e49c586cde9e9d82c2dfe
source Wiley-Blackwell Open Access Collection; Publicly Available Content Database (Proquest) (PQ_SDU_P3); ABI/INFORM Global
subjects Algorithms
Analysis
Approximation
Collaboration
Design
Efficiency
Exact solutions
Flow control
Frequency setting
Heuristic
Integer programming
Light rail transit
Linear programming
Mathematical analysis
Mathematical programming
Mixed integer
Nonlinear programming
Optimization
Optimization models
Passengers
Queuing theory
Transportation
Transportation corridors
Urban rail
title Analytical Approximation-Based Approach for Passenger Flow Control Strategy in Oversaturated Urban Rail Transit Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A19%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Approximation-Based%20Approach%20for%20Passenger%20Flow%20Control%20Strategy%20in%20Oversaturated%20Urban%20Rail%20Transit%20Systems&rft.jtitle=Journal%20of%20advanced%20transportation&rft.au=Zhu,%20Qian&rft.date=2023-06-23&rft.volume=2023&rft.spage=1&rft.epage=21&rft.pages=1-21&rft.issn=0197-6729&rft.eissn=2042-3195&rft_id=info:doi/10.1155/2023/3513517&rft_dat=%3Cgale_doaj_%3EA755558725%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-761e89ab4dae9a6bc2b7b5fe70aa9c0dcaec30fdc2dc8d475be6fd8c811d5d553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2832113362&rft_id=info:pmid/&rft_galeid=A755558725&rfr_iscdi=true