Loading…
Application of Computational Fluid Dynamics Analysis after Bimaxillary Orthognathic Surgery
Bimaxillary orthognathic surgery is widely used to treat skeletal class III malocclusion. Changes in jaw position affect the shape of surrounding soft tissues. We used computational fluid dynamics (CFD) simulation to observe changes in airways observed in a patient who underwent bimaxillary orthogna...
Saved in:
Published in: | Applied sciences 2020-03, Vol.10 (5), p.1676 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-fd8f99f598de38840872d6d7c543d7eed73fa4aa08c5b720f9b24e397f0ffe923 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-fd8f99f598de38840872d6d7c543d7eed73fa4aa08c5b720f9b24e397f0ffe923 |
container_end_page | |
container_issue | 5 |
container_start_page | 1676 |
container_title | Applied sciences |
container_volume | 10 |
creator | Song, Jae Min Seo, Heerim Choi, Na-Rae Yeom, Eunseop Kim, Yong-Deok |
description | Bimaxillary orthognathic surgery is widely used to treat skeletal class III malocclusion. Changes in jaw position affect the shape of surrounding soft tissues. We used computational fluid dynamics (CFD) simulation to observe changes in airways observed in a patient who underwent bimaxillary orthognathic surgery. For CFD simulation, we performed cone beam computed tomography (CBCT) preoperatively (T0), 3 days postoperatively (T1), and 7 months postoperatively (T2). The values of velocity, pressure drop (ΔP), and wall shear stress all increased 7 months after surgery (Vmax 7.038 m/s to 12.054 m/s, ΔP −7.723 Pa to −53.739 Pa, WSSmax 4.214 Pa to 14.323 Pa). Locations where the velocity and pressure gradients are large included the velopharynx, oropharynx, and epiglottis, with narrow cross-sectional areas. Wall shear stress was also observed at these locations. The velopharynx, oropharynx, and epiglottis are structures most vulnerable to morphological changes, that is, they can easily become obstructed. |
doi_str_mv | 10.3390/app10051676 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b13f1af6375e472599a72d95036900c6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b13f1af6375e472599a72d95036900c6</doaj_id><sourcerecordid>2373422240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-fd8f99f598de38840872d6d7c543d7eed73fa4aa08c5b720f9b24e397f0ffe923</originalsourceid><addsrcrecordid>eNpNUU1LAzEQDaJg0Z78AwGPspqv3WyOtVotFHpQTx7CNJu0KdtmTXbB_feurUjnMjOPx3szPIRuKLnnXJEHaBpKSE4LWZyhESOyyLig8vxkvkTjlLZkKEV5SckIfU6apvYGWh_2ODg8Dbumaw8r1HhWd77CT_0edt4kPBmwPvmEwbU24ke_g29f1xB7vIztJqz30G68wW9dXNvYX6MLB3Wy479-hT5mz-_T12yxfJlPJ4vM8EK0matKp5TLVVlZXpaClJJVRSVNLnglra0kdyAASGnylWTEqRUTlivpiHNWMX6F5kfdKsBWN3E4K_Y6gNcHIMS1hth6U1u9otxRcAWXuRWS5UrBYKZywgtFiCkGrdujVhPDV2dTq7ehi8PfSTMuuWCMCTKw7o4sE0NK0bp_V0r0bxj6JAz-A0k3fGw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2373422240</pqid></control><display><type>article</type><title>Application of Computational Fluid Dynamics Analysis after Bimaxillary Orthognathic Surgery</title><source>Publicly Available Content (ProQuest)</source><creator>Song, Jae Min ; Seo, Heerim ; Choi, Na-Rae ; Yeom, Eunseop ; Kim, Yong-Deok</creator><creatorcontrib>Song, Jae Min ; Seo, Heerim ; Choi, Na-Rae ; Yeom, Eunseop ; Kim, Yong-Deok</creatorcontrib><description>Bimaxillary orthognathic surgery is widely used to treat skeletal class III malocclusion. Changes in jaw position affect the shape of surrounding soft tissues. We used computational fluid dynamics (CFD) simulation to observe changes in airways observed in a patient who underwent bimaxillary orthognathic surgery. For CFD simulation, we performed cone beam computed tomography (CBCT) preoperatively (T0), 3 days postoperatively (T1), and 7 months postoperatively (T2). The values of velocity, pressure drop (ΔP), and wall shear stress all increased 7 months after surgery (Vmax 7.038 m/s to 12.054 m/s, ΔP −7.723 Pa to −53.739 Pa, WSSmax 4.214 Pa to 14.323 Pa). Locations where the velocity and pressure gradients are large included the velopharynx, oropharynx, and epiglottis, with narrow cross-sectional areas. Wall shear stress was also observed at these locations. The velopharynx, oropharynx, and epiglottis are structures most vulnerable to morphological changes, that is, they can easily become obstructed.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app10051676</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>2 jaw surgery ; Aerodynamics ; Air flow ; airway change ; bimaxillary orthognathic surgery ; computational fluid dynamic simulation ; Computational fluid dynamics ; Computed tomography ; Computer applications ; Computer simulation ; Epiglottis ; Fluid dynamics ; Hydrodynamics ; Oropharynx ; Patients ; Pressure ; Pressure drop ; Pressure gradients ; Shear stress ; Simulation ; Sleep apnea ; Soft tissues ; Stress analysis ; Surgery ; Turbulence models ; Velocity ; Volumetric analysis ; Vortices ; Wall shear stresses</subject><ispartof>Applied sciences, 2020-03, Vol.10 (5), p.1676</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-fd8f99f598de38840872d6d7c543d7eed73fa4aa08c5b720f9b24e397f0ffe923</citedby><cites>FETCH-LOGICAL-c364t-fd8f99f598de38840872d6d7c543d7eed73fa4aa08c5b720f9b24e397f0ffe923</cites><orcidid>0000-0002-4047-2163</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2373422240/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2373422240?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Song, Jae Min</creatorcontrib><creatorcontrib>Seo, Heerim</creatorcontrib><creatorcontrib>Choi, Na-Rae</creatorcontrib><creatorcontrib>Yeom, Eunseop</creatorcontrib><creatorcontrib>Kim, Yong-Deok</creatorcontrib><title>Application of Computational Fluid Dynamics Analysis after Bimaxillary Orthognathic Surgery</title><title>Applied sciences</title><description>Bimaxillary orthognathic surgery is widely used to treat skeletal class III malocclusion. Changes in jaw position affect the shape of surrounding soft tissues. We used computational fluid dynamics (CFD) simulation to observe changes in airways observed in a patient who underwent bimaxillary orthognathic surgery. For CFD simulation, we performed cone beam computed tomography (CBCT) preoperatively (T0), 3 days postoperatively (T1), and 7 months postoperatively (T2). The values of velocity, pressure drop (ΔP), and wall shear stress all increased 7 months after surgery (Vmax 7.038 m/s to 12.054 m/s, ΔP −7.723 Pa to −53.739 Pa, WSSmax 4.214 Pa to 14.323 Pa). Locations where the velocity and pressure gradients are large included the velopharynx, oropharynx, and epiglottis, with narrow cross-sectional areas. Wall shear stress was also observed at these locations. The velopharynx, oropharynx, and epiglottis are structures most vulnerable to morphological changes, that is, they can easily become obstructed.</description><subject>2 jaw surgery</subject><subject>Aerodynamics</subject><subject>Air flow</subject><subject>airway change</subject><subject>bimaxillary orthognathic surgery</subject><subject>computational fluid dynamic simulation</subject><subject>Computational fluid dynamics</subject><subject>Computed tomography</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Epiglottis</subject><subject>Fluid dynamics</subject><subject>Hydrodynamics</subject><subject>Oropharynx</subject><subject>Patients</subject><subject>Pressure</subject><subject>Pressure drop</subject><subject>Pressure gradients</subject><subject>Shear stress</subject><subject>Simulation</subject><subject>Sleep apnea</subject><subject>Soft tissues</subject><subject>Stress analysis</subject><subject>Surgery</subject><subject>Turbulence models</subject><subject>Velocity</subject><subject>Volumetric analysis</subject><subject>Vortices</subject><subject>Wall shear stresses</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQDaJg0Z78AwGPspqv3WyOtVotFHpQTx7CNJu0KdtmTXbB_feurUjnMjOPx3szPIRuKLnnXJEHaBpKSE4LWZyhESOyyLig8vxkvkTjlLZkKEV5SckIfU6apvYGWh_2ODg8Dbumaw8r1HhWd77CT_0edt4kPBmwPvmEwbU24ke_g29f1xB7vIztJqz30G68wW9dXNvYX6MLB3Wy479-hT5mz-_T12yxfJlPJ4vM8EK0matKp5TLVVlZXpaClJJVRSVNLnglra0kdyAASGnylWTEqRUTlivpiHNWMX6F5kfdKsBWN3E4K_Y6gNcHIMS1hth6U1u9otxRcAWXuRWS5UrBYKZywgtFiCkGrdujVhPDV2dTq7ehi8PfSTMuuWCMCTKw7o4sE0NK0bp_V0r0bxj6JAz-A0k3fGw</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Song, Jae Min</creator><creator>Seo, Heerim</creator><creator>Choi, Na-Rae</creator><creator>Yeom, Eunseop</creator><creator>Kim, Yong-Deok</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4047-2163</orcidid></search><sort><creationdate>20200301</creationdate><title>Application of Computational Fluid Dynamics Analysis after Bimaxillary Orthognathic Surgery</title><author>Song, Jae Min ; Seo, Heerim ; Choi, Na-Rae ; Yeom, Eunseop ; Kim, Yong-Deok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-fd8f99f598de38840872d6d7c543d7eed73fa4aa08c5b720f9b24e397f0ffe923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>2 jaw surgery</topic><topic>Aerodynamics</topic><topic>Air flow</topic><topic>airway change</topic><topic>bimaxillary orthognathic surgery</topic><topic>computational fluid dynamic simulation</topic><topic>Computational fluid dynamics</topic><topic>Computed tomography</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Epiglottis</topic><topic>Fluid dynamics</topic><topic>Hydrodynamics</topic><topic>Oropharynx</topic><topic>Patients</topic><topic>Pressure</topic><topic>Pressure drop</topic><topic>Pressure gradients</topic><topic>Shear stress</topic><topic>Simulation</topic><topic>Sleep apnea</topic><topic>Soft tissues</topic><topic>Stress analysis</topic><topic>Surgery</topic><topic>Turbulence models</topic><topic>Velocity</topic><topic>Volumetric analysis</topic><topic>Vortices</topic><topic>Wall shear stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Jae Min</creatorcontrib><creatorcontrib>Seo, Heerim</creatorcontrib><creatorcontrib>Choi, Na-Rae</creatorcontrib><creatorcontrib>Yeom, Eunseop</creatorcontrib><creatorcontrib>Kim, Yong-Deok</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Jae Min</au><au>Seo, Heerim</au><au>Choi, Na-Rae</au><au>Yeom, Eunseop</au><au>Kim, Yong-Deok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Computational Fluid Dynamics Analysis after Bimaxillary Orthognathic Surgery</atitle><jtitle>Applied sciences</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>10</volume><issue>5</issue><spage>1676</spage><pages>1676-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Bimaxillary orthognathic surgery is widely used to treat skeletal class III malocclusion. Changes in jaw position affect the shape of surrounding soft tissues. We used computational fluid dynamics (CFD) simulation to observe changes in airways observed in a patient who underwent bimaxillary orthognathic surgery. For CFD simulation, we performed cone beam computed tomography (CBCT) preoperatively (T0), 3 days postoperatively (T1), and 7 months postoperatively (T2). The values of velocity, pressure drop (ΔP), and wall shear stress all increased 7 months after surgery (Vmax 7.038 m/s to 12.054 m/s, ΔP −7.723 Pa to −53.739 Pa, WSSmax 4.214 Pa to 14.323 Pa). Locations where the velocity and pressure gradients are large included the velopharynx, oropharynx, and epiglottis, with narrow cross-sectional areas. Wall shear stress was also observed at these locations. The velopharynx, oropharynx, and epiglottis are structures most vulnerable to morphological changes, that is, they can easily become obstructed.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app10051676</doi><orcidid>https://orcid.org/0000-0002-4047-2163</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2020-03, Vol.10 (5), p.1676 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b13f1af6375e472599a72d95036900c6 |
source | Publicly Available Content (ProQuest) |
subjects | 2 jaw surgery Aerodynamics Air flow airway change bimaxillary orthognathic surgery computational fluid dynamic simulation Computational fluid dynamics Computed tomography Computer applications Computer simulation Epiglottis Fluid dynamics Hydrodynamics Oropharynx Patients Pressure Pressure drop Pressure gradients Shear stress Simulation Sleep apnea Soft tissues Stress analysis Surgery Turbulence models Velocity Volumetric analysis Vortices Wall shear stresses |
title | Application of Computational Fluid Dynamics Analysis after Bimaxillary Orthognathic Surgery |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A27%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Computational%20Fluid%20Dynamics%20Analysis%20after%20Bimaxillary%20Orthognathic%20Surgery&rft.jtitle=Applied%20sciences&rft.au=Song,%20Jae%20Min&rft.date=2020-03-01&rft.volume=10&rft.issue=5&rft.spage=1676&rft.pages=1676-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app10051676&rft_dat=%3Cproquest_doaj_%3E2373422240%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-fd8f99f598de38840872d6d7c543d7eed73fa4aa08c5b720f9b24e397f0ffe923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2373422240&rft_id=info:pmid/&rfr_iscdi=true |