Loading…

Application of Computational Fluid Dynamics Analysis after Bimaxillary Orthognathic Surgery

Bimaxillary orthognathic surgery is widely used to treat skeletal class III malocclusion. Changes in jaw position affect the shape of surrounding soft tissues. We used computational fluid dynamics (CFD) simulation to observe changes in airways observed in a patient who underwent bimaxillary orthogna...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2020-03, Vol.10 (5), p.1676
Main Authors: Song, Jae Min, Seo, Heerim, Choi, Na-Rae, Yeom, Eunseop, Kim, Yong-Deok
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-fd8f99f598de38840872d6d7c543d7eed73fa4aa08c5b720f9b24e397f0ffe923
cites cdi_FETCH-LOGICAL-c364t-fd8f99f598de38840872d6d7c543d7eed73fa4aa08c5b720f9b24e397f0ffe923
container_end_page
container_issue 5
container_start_page 1676
container_title Applied sciences
container_volume 10
creator Song, Jae Min
Seo, Heerim
Choi, Na-Rae
Yeom, Eunseop
Kim, Yong-Deok
description Bimaxillary orthognathic surgery is widely used to treat skeletal class III malocclusion. Changes in jaw position affect the shape of surrounding soft tissues. We used computational fluid dynamics (CFD) simulation to observe changes in airways observed in a patient who underwent bimaxillary orthognathic surgery. For CFD simulation, we performed cone beam computed tomography (CBCT) preoperatively (T0), 3 days postoperatively (T1), and 7 months postoperatively (T2). The values of velocity, pressure drop (ΔP), and wall shear stress all increased 7 months after surgery (Vmax 7.038 m/s to 12.054 m/s, ΔP −7.723 Pa to −53.739 Pa, WSSmax 4.214 Pa to 14.323 Pa). Locations where the velocity and pressure gradients are large included the velopharynx, oropharynx, and epiglottis, with narrow cross-sectional areas. Wall shear stress was also observed at these locations. The velopharynx, oropharynx, and epiglottis are structures most vulnerable to morphological changes, that is, they can easily become obstructed.
doi_str_mv 10.3390/app10051676
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b13f1af6375e472599a72d95036900c6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b13f1af6375e472599a72d95036900c6</doaj_id><sourcerecordid>2373422240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-fd8f99f598de38840872d6d7c543d7eed73fa4aa08c5b720f9b24e397f0ffe923</originalsourceid><addsrcrecordid>eNpNUU1LAzEQDaJg0Z78AwGPspqv3WyOtVotFHpQTx7CNJu0KdtmTXbB_feurUjnMjOPx3szPIRuKLnnXJEHaBpKSE4LWZyhESOyyLig8vxkvkTjlLZkKEV5SckIfU6apvYGWh_2ODg8Dbumaw8r1HhWd77CT_0edt4kPBmwPvmEwbU24ke_g29f1xB7vIztJqz30G68wW9dXNvYX6MLB3Wy479-hT5mz-_T12yxfJlPJ4vM8EK0matKp5TLVVlZXpaClJJVRSVNLnglra0kdyAASGnylWTEqRUTlivpiHNWMX6F5kfdKsBWN3E4K_Y6gNcHIMS1hth6U1u9otxRcAWXuRWS5UrBYKZywgtFiCkGrdujVhPDV2dTq7ehi8PfSTMuuWCMCTKw7o4sE0NK0bp_V0r0bxj6JAz-A0k3fGw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2373422240</pqid></control><display><type>article</type><title>Application of Computational Fluid Dynamics Analysis after Bimaxillary Orthognathic Surgery</title><source>Publicly Available Content (ProQuest)</source><creator>Song, Jae Min ; Seo, Heerim ; Choi, Na-Rae ; Yeom, Eunseop ; Kim, Yong-Deok</creator><creatorcontrib>Song, Jae Min ; Seo, Heerim ; Choi, Na-Rae ; Yeom, Eunseop ; Kim, Yong-Deok</creatorcontrib><description>Bimaxillary orthognathic surgery is widely used to treat skeletal class III malocclusion. Changes in jaw position affect the shape of surrounding soft tissues. We used computational fluid dynamics (CFD) simulation to observe changes in airways observed in a patient who underwent bimaxillary orthognathic surgery. For CFD simulation, we performed cone beam computed tomography (CBCT) preoperatively (T0), 3 days postoperatively (T1), and 7 months postoperatively (T2). The values of velocity, pressure drop (ΔP), and wall shear stress all increased 7 months after surgery (Vmax 7.038 m/s to 12.054 m/s, ΔP −7.723 Pa to −53.739 Pa, WSSmax 4.214 Pa to 14.323 Pa). Locations where the velocity and pressure gradients are large included the velopharynx, oropharynx, and epiglottis, with narrow cross-sectional areas. Wall shear stress was also observed at these locations. The velopharynx, oropharynx, and epiglottis are structures most vulnerable to morphological changes, that is, they can easily become obstructed.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app10051676</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>2 jaw surgery ; Aerodynamics ; Air flow ; airway change ; bimaxillary orthognathic surgery ; computational fluid dynamic simulation ; Computational fluid dynamics ; Computed tomography ; Computer applications ; Computer simulation ; Epiglottis ; Fluid dynamics ; Hydrodynamics ; Oropharynx ; Patients ; Pressure ; Pressure drop ; Pressure gradients ; Shear stress ; Simulation ; Sleep apnea ; Soft tissues ; Stress analysis ; Surgery ; Turbulence models ; Velocity ; Volumetric analysis ; Vortices ; Wall shear stresses</subject><ispartof>Applied sciences, 2020-03, Vol.10 (5), p.1676</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-fd8f99f598de38840872d6d7c543d7eed73fa4aa08c5b720f9b24e397f0ffe923</citedby><cites>FETCH-LOGICAL-c364t-fd8f99f598de38840872d6d7c543d7eed73fa4aa08c5b720f9b24e397f0ffe923</cites><orcidid>0000-0002-4047-2163</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2373422240/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2373422240?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Song, Jae Min</creatorcontrib><creatorcontrib>Seo, Heerim</creatorcontrib><creatorcontrib>Choi, Na-Rae</creatorcontrib><creatorcontrib>Yeom, Eunseop</creatorcontrib><creatorcontrib>Kim, Yong-Deok</creatorcontrib><title>Application of Computational Fluid Dynamics Analysis after Bimaxillary Orthognathic Surgery</title><title>Applied sciences</title><description>Bimaxillary orthognathic surgery is widely used to treat skeletal class III malocclusion. Changes in jaw position affect the shape of surrounding soft tissues. We used computational fluid dynamics (CFD) simulation to observe changes in airways observed in a patient who underwent bimaxillary orthognathic surgery. For CFD simulation, we performed cone beam computed tomography (CBCT) preoperatively (T0), 3 days postoperatively (T1), and 7 months postoperatively (T2). The values of velocity, pressure drop (ΔP), and wall shear stress all increased 7 months after surgery (Vmax 7.038 m/s to 12.054 m/s, ΔP −7.723 Pa to −53.739 Pa, WSSmax 4.214 Pa to 14.323 Pa). Locations where the velocity and pressure gradients are large included the velopharynx, oropharynx, and epiglottis, with narrow cross-sectional areas. Wall shear stress was also observed at these locations. The velopharynx, oropharynx, and epiglottis are structures most vulnerable to morphological changes, that is, they can easily become obstructed.</description><subject>2 jaw surgery</subject><subject>Aerodynamics</subject><subject>Air flow</subject><subject>airway change</subject><subject>bimaxillary orthognathic surgery</subject><subject>computational fluid dynamic simulation</subject><subject>Computational fluid dynamics</subject><subject>Computed tomography</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Epiglottis</subject><subject>Fluid dynamics</subject><subject>Hydrodynamics</subject><subject>Oropharynx</subject><subject>Patients</subject><subject>Pressure</subject><subject>Pressure drop</subject><subject>Pressure gradients</subject><subject>Shear stress</subject><subject>Simulation</subject><subject>Sleep apnea</subject><subject>Soft tissues</subject><subject>Stress analysis</subject><subject>Surgery</subject><subject>Turbulence models</subject><subject>Velocity</subject><subject>Volumetric analysis</subject><subject>Vortices</subject><subject>Wall shear stresses</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQDaJg0Z78AwGPspqv3WyOtVotFHpQTx7CNJu0KdtmTXbB_feurUjnMjOPx3szPIRuKLnnXJEHaBpKSE4LWZyhESOyyLig8vxkvkTjlLZkKEV5SckIfU6apvYGWh_2ODg8Dbumaw8r1HhWd77CT_0edt4kPBmwPvmEwbU24ke_g29f1xB7vIztJqz30G68wW9dXNvYX6MLB3Wy479-hT5mz-_T12yxfJlPJ4vM8EK0matKp5TLVVlZXpaClJJVRSVNLnglra0kdyAASGnylWTEqRUTlivpiHNWMX6F5kfdKsBWN3E4K_Y6gNcHIMS1hth6U1u9otxRcAWXuRWS5UrBYKZywgtFiCkGrdujVhPDV2dTq7ehi8PfSTMuuWCMCTKw7o4sE0NK0bp_V0r0bxj6JAz-A0k3fGw</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Song, Jae Min</creator><creator>Seo, Heerim</creator><creator>Choi, Na-Rae</creator><creator>Yeom, Eunseop</creator><creator>Kim, Yong-Deok</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4047-2163</orcidid></search><sort><creationdate>20200301</creationdate><title>Application of Computational Fluid Dynamics Analysis after Bimaxillary Orthognathic Surgery</title><author>Song, Jae Min ; Seo, Heerim ; Choi, Na-Rae ; Yeom, Eunseop ; Kim, Yong-Deok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-fd8f99f598de38840872d6d7c543d7eed73fa4aa08c5b720f9b24e397f0ffe923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>2 jaw surgery</topic><topic>Aerodynamics</topic><topic>Air flow</topic><topic>airway change</topic><topic>bimaxillary orthognathic surgery</topic><topic>computational fluid dynamic simulation</topic><topic>Computational fluid dynamics</topic><topic>Computed tomography</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Epiglottis</topic><topic>Fluid dynamics</topic><topic>Hydrodynamics</topic><topic>Oropharynx</topic><topic>Patients</topic><topic>Pressure</topic><topic>Pressure drop</topic><topic>Pressure gradients</topic><topic>Shear stress</topic><topic>Simulation</topic><topic>Sleep apnea</topic><topic>Soft tissues</topic><topic>Stress analysis</topic><topic>Surgery</topic><topic>Turbulence models</topic><topic>Velocity</topic><topic>Volumetric analysis</topic><topic>Vortices</topic><topic>Wall shear stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Jae Min</creatorcontrib><creatorcontrib>Seo, Heerim</creatorcontrib><creatorcontrib>Choi, Na-Rae</creatorcontrib><creatorcontrib>Yeom, Eunseop</creatorcontrib><creatorcontrib>Kim, Yong-Deok</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Jae Min</au><au>Seo, Heerim</au><au>Choi, Na-Rae</au><au>Yeom, Eunseop</au><au>Kim, Yong-Deok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Computational Fluid Dynamics Analysis after Bimaxillary Orthognathic Surgery</atitle><jtitle>Applied sciences</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>10</volume><issue>5</issue><spage>1676</spage><pages>1676-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Bimaxillary orthognathic surgery is widely used to treat skeletal class III malocclusion. Changes in jaw position affect the shape of surrounding soft tissues. We used computational fluid dynamics (CFD) simulation to observe changes in airways observed in a patient who underwent bimaxillary orthognathic surgery. For CFD simulation, we performed cone beam computed tomography (CBCT) preoperatively (T0), 3 days postoperatively (T1), and 7 months postoperatively (T2). The values of velocity, pressure drop (ΔP), and wall shear stress all increased 7 months after surgery (Vmax 7.038 m/s to 12.054 m/s, ΔP −7.723 Pa to −53.739 Pa, WSSmax 4.214 Pa to 14.323 Pa). Locations where the velocity and pressure gradients are large included the velopharynx, oropharynx, and epiglottis, with narrow cross-sectional areas. Wall shear stress was also observed at these locations. The velopharynx, oropharynx, and epiglottis are structures most vulnerable to morphological changes, that is, they can easily become obstructed.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app10051676</doi><orcidid>https://orcid.org/0000-0002-4047-2163</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2020-03, Vol.10 (5), p.1676
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b13f1af6375e472599a72d95036900c6
source Publicly Available Content (ProQuest)
subjects 2 jaw surgery
Aerodynamics
Air flow
airway change
bimaxillary orthognathic surgery
computational fluid dynamic simulation
Computational fluid dynamics
Computed tomography
Computer applications
Computer simulation
Epiglottis
Fluid dynamics
Hydrodynamics
Oropharynx
Patients
Pressure
Pressure drop
Pressure gradients
Shear stress
Simulation
Sleep apnea
Soft tissues
Stress analysis
Surgery
Turbulence models
Velocity
Volumetric analysis
Vortices
Wall shear stresses
title Application of Computational Fluid Dynamics Analysis after Bimaxillary Orthognathic Surgery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A27%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Computational%20Fluid%20Dynamics%20Analysis%20after%20Bimaxillary%20Orthognathic%20Surgery&rft.jtitle=Applied%20sciences&rft.au=Song,%20Jae%20Min&rft.date=2020-03-01&rft.volume=10&rft.issue=5&rft.spage=1676&rft.pages=1676-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app10051676&rft_dat=%3Cproquest_doaj_%3E2373422240%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-fd8f99f598de38840872d6d7c543d7eed73fa4aa08c5b720f9b24e397f0ffe923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2373422240&rft_id=info:pmid/&rfr_iscdi=true