Loading…

Preliminary Study on Reconstruction of Building Thermal Field Based on Iterative Algorithm Acoustic CT

Real-time acquisition and visualization of temperature anomalies in building spaces and 3D temperature field data during fires are of vital importance for fire danger warnings, early rescue operations, evacuation commands, and subsequent fire accident investigations. Taking into account the non-cont...

Full description

Saved in:
Bibliographic Details
Published in:Fire (Basel, Switzerland) Switzerland), 2023-05, Vol.6 (5), p.199
Main Authors: Qin, Hengjie, Wen, Jiangqi, Gao, Zihe, Chai, Lingling, Yao, Haowei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Real-time acquisition and visualization of temperature anomalies in building spaces and 3D temperature field data during fires are of vital importance for fire danger warnings, early rescue operations, evacuation commands, and subsequent fire accident investigations. Taking into account the non-contact, global (planar and spatial), and high efficiency advantages of acoustic CT temperature measurement technology, this study involved the conducting of exploratory preliminary research in order to provide new ideas for the real-time global perception of information on building fires. The detailed research objective was as follows: obtain the temperature data at any time of a fire based on Fire Dynamics Simulator (FDS) and fit them to form the base temperature distribution diagram at that time. The large ill-conditioned matrix equation of acoustic flight under the scheme of multi-grid division was then constructed. The discrete temperature data of each grid in the building space was obtained by solving the matrix equation based on algebraic reconstruction algorithm (ART) and joint algebraic reconstruction algorithm (SART). The three-dimensional temperature field reconstruction of building space was realized by the interpolation of discrete temperature data. The reconstruction effect of each scheme was evaluated through the error analysis between the reconstruction data and the basic data. The results show that the real-time reconstruction of a 3D temperature field of a building thermal field can be realized based on acoustic CT temperature measurement technology, and the reconstruction algorithm and grid division scheme have a significant control effect on the reconstruction effect.
ISSN:2571-6255
2571-6255
DOI:10.3390/fire6050199