Loading…
Microbial Diversity and Community Structure of Wastewater-Driven Microalgal Biofilms
Dwindling water sources increase the need for efficient wastewater treatment. Solar-driven algal turf scrubber (ATS) system may remediate wastewater by supporting the development and growth of periphytic microbiomes that function and interact in a highly dynamic manner through symbiotic interactions...
Saved in:
Published in: | Microorganisms (Basel) 2023-12, Vol.11 (12), p.2994 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c439t-267b05bbf919bdc50f1b4561f0130de3a31ea0ee076e1b4bef89f545cb43817f3 |
container_end_page | |
container_issue | 12 |
container_start_page | 2994 |
container_title | Microorganisms (Basel) |
container_volume | 11 |
creator | Blifernez-Klassen, Olga Hassa, Julia Reinecke, Diana L Busche, Tobias Klassen, Viktor Kruse, Olaf |
description | Dwindling water sources increase the need for efficient wastewater treatment. Solar-driven algal turf scrubber (ATS) system may remediate wastewater by supporting the development and growth of periphytic microbiomes that function and interact in a highly dynamic manner through symbiotic interactions. Using ITS and 16S rRNA gene amplicon sequencing, we profiled the microbial communities of four microbial biofilms from ATS systems operated with municipal wastewater (mWW), diluted cattle and pig manure (CattleM and PigM), and biogas plant effluent supernatant (BGE) in comparison to the initial inocula and the respective wastewater substrates. The wastewater-driven biofilms differed significantly in their biodiversity and structure, exhibiting an inocula-independent but substrate-dependent establishment of the microbial communities. The prokaryotic communities were comparable among themselves and with other microbiomes of aquatic environments and were dominated by metabolically flexible prokaryotes such as nitrifiers, polyphosphate-accumulating and algicide-producing microorganisms, and anoxygenic photoautotrophs. Striking differences occurred in eukaryotic communities: While the mWW biofilm was characterized by high biodiversity and many filamentous (benthic) microalgae, the agricultural wastewater-fed biofilms consisted of less diverse communities with few benthic taxa mainly inhabited by unicellular chlorophytes and saprophytes/parasites. This study advances our understanding of the microbiome structure and function within the ATS-based wastewater treatment process. |
doi_str_mv | 10.3390/microorganisms11122994 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b16fd88863254e9a9882b215874dc8df</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A779213215</galeid><doaj_id>oai_doaj_org_article_b16fd88863254e9a9882b215874dc8df</doaj_id><sourcerecordid>A779213215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-267b05bbf919bdc50f1b4561f0130de3a31ea0ee076e1b4bef89f545cb43817f3</originalsourceid><addsrcrecordid>eNptUV1rFDEUDaLYsvYvlAFffNmaz5nksW79KFR8sOJjSDI3JcvMpCYzSv-9d3ZrETEJ5Oucw7nnEnLO6IUQhr4dUyg5lzs3pTpWxhjnxshn5JTTrt3ylnbP_zqfkLNa9xSHYUIr9pKcCM0O65Tcfl61fHJDc5V-Qqlpfmjc1De7PI7LtN6-zmUJ81KgybH57uoMv9wMZXtVkDA1BwE33KHCu5RjGsb6iryIbqhw9rhvyLcP7293n7Y3Xz5e7y5vtkEKM6O5zlPlfTTM-D4oGpmXqmWRMkF7EE4wcBQACwH88RC1iUqq4CW676LYkOujbp_d3t6XNLryYLNL9vCACVlX5hQGsJ61sddat4IrCcYZrbnnTOlO9kH3q9abo9Z9yT8WqLMdUw0wDG6CvFTLDVWKC6YUQl__A93npUxY6YqSWnGJSW_IxRGFyYBNU8xzcQFnD9i_PAFGBfay6wxnAp0goT0SMM9aC8Snihi1a9_t__uOxPNHP4sfoX-i_emy-A1Lpaxp</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904852491</pqid></control><display><type>article</type><title>Microbial Diversity and Community Structure of Wastewater-Driven Microalgal Biofilms</title><source>PubMed Central(OpenAccess)</source><source>Publicly Available Content (ProQuest)</source><creator>Blifernez-Klassen, Olga ; Hassa, Julia ; Reinecke, Diana L ; Busche, Tobias ; Klassen, Viktor ; Kruse, Olaf</creator><creatorcontrib>Blifernez-Klassen, Olga ; Hassa, Julia ; Reinecke, Diana L ; Busche, Tobias ; Klassen, Viktor ; Kruse, Olaf</creatorcontrib><description>Dwindling water sources increase the need for efficient wastewater treatment. Solar-driven algal turf scrubber (ATS) system may remediate wastewater by supporting the development and growth of periphytic microbiomes that function and interact in a highly dynamic manner through symbiotic interactions. Using ITS and 16S rRNA gene amplicon sequencing, we profiled the microbial communities of four microbial biofilms from ATS systems operated with municipal wastewater (mWW), diluted cattle and pig manure (CattleM and PigM), and biogas plant effluent supernatant (BGE) in comparison to the initial inocula and the respective wastewater substrates. The wastewater-driven biofilms differed significantly in their biodiversity and structure, exhibiting an inocula-independent but substrate-dependent establishment of the microbial communities. The prokaryotic communities were comparable among themselves and with other microbiomes of aquatic environments and were dominated by metabolically flexible prokaryotes such as nitrifiers, polyphosphate-accumulating and algicide-producing microorganisms, and anoxygenic photoautotrophs. Striking differences occurred in eukaryotic communities: While the mWW biofilm was characterized by high biodiversity and many filamentous (benthic) microalgae, the agricultural wastewater-fed biofilms consisted of less diverse communities with few benthic taxa mainly inhabited by unicellular chlorophytes and saprophytes/parasites. This study advances our understanding of the microbiome structure and function within the ATS-based wastewater treatment process.</description><identifier>ISSN: 2076-2607</identifier><identifier>EISSN: 2076-2607</identifier><identifier>DOI: 10.3390/microorganisms11122994</identifier><identifier>PMID: 38138138</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Agricultural wastes ; Algae ; Algicides ; Alternative energy sources ; Animal wastes ; Aquatic environment ; Aquatic microorganisms ; Bacteria ; Biodiversity ; biofilm ; Biofilms ; Biogas ; Biomass ; Carbon dioxide ; Community structure ; Datasets ; environmental microbiome structure ; Gene sequencing ; Genetic testing ; Heavy metals ; Herbicides ; Manures ; Metabolism ; Metabolites ; Microalgae ; microalga–bacteria consortia ; Microbial activity ; microbial biodiversity ; Microbial mats ; Microbiological research ; Microbiomes ; Microorganisms ; Municipal wastewater ; Nitrogen ; Nutrient removal ; Parasites ; Phosphorus ; Pig manure ; Pollutants ; Prokaryotes ; Purification ; Resource recovery ; rRNA 16S ; Saprophytes ; Sewage ; Structure-function relationships ; Substrates ; taxonomic profiling ; Taxonomy ; Turf ; wastewater ; Wastewater treatment ; Water treatment</subject><ispartof>Microorganisms (Basel), 2023-12, Vol.11 (12), p.2994</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c439t-267b05bbf919bdc50f1b4561f0130de3a31ea0ee076e1b4bef89f545cb43817f3</cites><orcidid>0000-0001-9874-382X ; 0000-0003-1887-2491 ; 0000-0001-7411-6186 ; 0000-0003-2708-1835</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2904852491/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2904852491?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,36992,44569,74873</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38138138$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Blifernez-Klassen, Olga</creatorcontrib><creatorcontrib>Hassa, Julia</creatorcontrib><creatorcontrib>Reinecke, Diana L</creatorcontrib><creatorcontrib>Busche, Tobias</creatorcontrib><creatorcontrib>Klassen, Viktor</creatorcontrib><creatorcontrib>Kruse, Olaf</creatorcontrib><title>Microbial Diversity and Community Structure of Wastewater-Driven Microalgal Biofilms</title><title>Microorganisms (Basel)</title><addtitle>Microorganisms</addtitle><description>Dwindling water sources increase the need for efficient wastewater treatment. Solar-driven algal turf scrubber (ATS) system may remediate wastewater by supporting the development and growth of periphytic microbiomes that function and interact in a highly dynamic manner through symbiotic interactions. Using ITS and 16S rRNA gene amplicon sequencing, we profiled the microbial communities of four microbial biofilms from ATS systems operated with municipal wastewater (mWW), diluted cattle and pig manure (CattleM and PigM), and biogas plant effluent supernatant (BGE) in comparison to the initial inocula and the respective wastewater substrates. The wastewater-driven biofilms differed significantly in their biodiversity and structure, exhibiting an inocula-independent but substrate-dependent establishment of the microbial communities. The prokaryotic communities were comparable among themselves and with other microbiomes of aquatic environments and were dominated by metabolically flexible prokaryotes such as nitrifiers, polyphosphate-accumulating and algicide-producing microorganisms, and anoxygenic photoautotrophs. Striking differences occurred in eukaryotic communities: While the mWW biofilm was characterized by high biodiversity and many filamentous (benthic) microalgae, the agricultural wastewater-fed biofilms consisted of less diverse communities with few benthic taxa mainly inhabited by unicellular chlorophytes and saprophytes/parasites. This study advances our understanding of the microbiome structure and function within the ATS-based wastewater treatment process.</description><subject>Agricultural wastes</subject><subject>Algae</subject><subject>Algicides</subject><subject>Alternative energy sources</subject><subject>Animal wastes</subject><subject>Aquatic environment</subject><subject>Aquatic microorganisms</subject><subject>Bacteria</subject><subject>Biodiversity</subject><subject>biofilm</subject><subject>Biofilms</subject><subject>Biogas</subject><subject>Biomass</subject><subject>Carbon dioxide</subject><subject>Community structure</subject><subject>Datasets</subject><subject>environmental microbiome structure</subject><subject>Gene sequencing</subject><subject>Genetic testing</subject><subject>Heavy metals</subject><subject>Herbicides</subject><subject>Manures</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Microalgae</subject><subject>microalga–bacteria consortia</subject><subject>Microbial activity</subject><subject>microbial biodiversity</subject><subject>Microbial mats</subject><subject>Microbiological research</subject><subject>Microbiomes</subject><subject>Microorganisms</subject><subject>Municipal wastewater</subject><subject>Nitrogen</subject><subject>Nutrient removal</subject><subject>Parasites</subject><subject>Phosphorus</subject><subject>Pig manure</subject><subject>Pollutants</subject><subject>Prokaryotes</subject><subject>Purification</subject><subject>Resource recovery</subject><subject>rRNA 16S</subject><subject>Saprophytes</subject><subject>Sewage</subject><subject>Structure-function relationships</subject><subject>Substrates</subject><subject>taxonomic profiling</subject><subject>Taxonomy</subject><subject>Turf</subject><subject>wastewater</subject><subject>Wastewater treatment</subject><subject>Water treatment</subject><issn>2076-2607</issn><issn>2076-2607</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUV1rFDEUDaLYsvYvlAFffNmaz5nksW79KFR8sOJjSDI3JcvMpCYzSv-9d3ZrETEJ5Oucw7nnEnLO6IUQhr4dUyg5lzs3pTpWxhjnxshn5JTTrt3ylnbP_zqfkLNa9xSHYUIr9pKcCM0O65Tcfl61fHJDc5V-Qqlpfmjc1De7PI7LtN6-zmUJ81KgybH57uoMv9wMZXtVkDA1BwE33KHCu5RjGsb6iryIbqhw9rhvyLcP7293n7Y3Xz5e7y5vtkEKM6O5zlPlfTTM-D4oGpmXqmWRMkF7EE4wcBQACwH88RC1iUqq4CW676LYkOujbp_d3t6XNLryYLNL9vCACVlX5hQGsJ61sddat4IrCcYZrbnnTOlO9kH3q9abo9Z9yT8WqLMdUw0wDG6CvFTLDVWKC6YUQl__A93npUxY6YqSWnGJSW_IxRGFyYBNU8xzcQFnD9i_PAFGBfay6wxnAp0goT0SMM9aC8Snihi1a9_t__uOxPNHP4sfoX-i_emy-A1Lpaxp</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Blifernez-Klassen, Olga</creator><creator>Hassa, Julia</creator><creator>Reinecke, Diana L</creator><creator>Busche, Tobias</creator><creator>Klassen, Viktor</creator><creator>Kruse, Olaf</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T7</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9874-382X</orcidid><orcidid>https://orcid.org/0000-0003-1887-2491</orcidid><orcidid>https://orcid.org/0000-0001-7411-6186</orcidid><orcidid>https://orcid.org/0000-0003-2708-1835</orcidid></search><sort><creationdate>20231201</creationdate><title>Microbial Diversity and Community Structure of Wastewater-Driven Microalgal Biofilms</title><author>Blifernez-Klassen, Olga ; Hassa, Julia ; Reinecke, Diana L ; Busche, Tobias ; Klassen, Viktor ; Kruse, Olaf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-267b05bbf919bdc50f1b4561f0130de3a31ea0ee076e1b4bef89f545cb43817f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agricultural wastes</topic><topic>Algae</topic><topic>Algicides</topic><topic>Alternative energy sources</topic><topic>Animal wastes</topic><topic>Aquatic environment</topic><topic>Aquatic microorganisms</topic><topic>Bacteria</topic><topic>Biodiversity</topic><topic>biofilm</topic><topic>Biofilms</topic><topic>Biogas</topic><topic>Biomass</topic><topic>Carbon dioxide</topic><topic>Community structure</topic><topic>Datasets</topic><topic>environmental microbiome structure</topic><topic>Gene sequencing</topic><topic>Genetic testing</topic><topic>Heavy metals</topic><topic>Herbicides</topic><topic>Manures</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Microalgae</topic><topic>microalga–bacteria consortia</topic><topic>Microbial activity</topic><topic>microbial biodiversity</topic><topic>Microbial mats</topic><topic>Microbiological research</topic><topic>Microbiomes</topic><topic>Microorganisms</topic><topic>Municipal wastewater</topic><topic>Nitrogen</topic><topic>Nutrient removal</topic><topic>Parasites</topic><topic>Phosphorus</topic><topic>Pig manure</topic><topic>Pollutants</topic><topic>Prokaryotes</topic><topic>Purification</topic><topic>Resource recovery</topic><topic>rRNA 16S</topic><topic>Saprophytes</topic><topic>Sewage</topic><topic>Structure-function relationships</topic><topic>Substrates</topic><topic>taxonomic profiling</topic><topic>Taxonomy</topic><topic>Turf</topic><topic>wastewater</topic><topic>Wastewater treatment</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blifernez-Klassen, Olga</creatorcontrib><creatorcontrib>Hassa, Julia</creatorcontrib><creatorcontrib>Reinecke, Diana L</creatorcontrib><creatorcontrib>Busche, Tobias</creatorcontrib><creatorcontrib>Klassen, Viktor</creatorcontrib><creatorcontrib>Kruse, Olaf</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Microorganisms (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blifernez-Klassen, Olga</au><au>Hassa, Julia</au><au>Reinecke, Diana L</au><au>Busche, Tobias</au><au>Klassen, Viktor</au><au>Kruse, Olaf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial Diversity and Community Structure of Wastewater-Driven Microalgal Biofilms</atitle><jtitle>Microorganisms (Basel)</jtitle><addtitle>Microorganisms</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>11</volume><issue>12</issue><spage>2994</spage><pages>2994-</pages><issn>2076-2607</issn><eissn>2076-2607</eissn><abstract>Dwindling water sources increase the need for efficient wastewater treatment. Solar-driven algal turf scrubber (ATS) system may remediate wastewater by supporting the development and growth of periphytic microbiomes that function and interact in a highly dynamic manner through symbiotic interactions. Using ITS and 16S rRNA gene amplicon sequencing, we profiled the microbial communities of four microbial biofilms from ATS systems operated with municipal wastewater (mWW), diluted cattle and pig manure (CattleM and PigM), and biogas plant effluent supernatant (BGE) in comparison to the initial inocula and the respective wastewater substrates. The wastewater-driven biofilms differed significantly in their biodiversity and structure, exhibiting an inocula-independent but substrate-dependent establishment of the microbial communities. The prokaryotic communities were comparable among themselves and with other microbiomes of aquatic environments and were dominated by metabolically flexible prokaryotes such as nitrifiers, polyphosphate-accumulating and algicide-producing microorganisms, and anoxygenic photoautotrophs. Striking differences occurred in eukaryotic communities: While the mWW biofilm was characterized by high biodiversity and many filamentous (benthic) microalgae, the agricultural wastewater-fed biofilms consisted of less diverse communities with few benthic taxa mainly inhabited by unicellular chlorophytes and saprophytes/parasites. This study advances our understanding of the microbiome structure and function within the ATS-based wastewater treatment process.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38138138</pmid><doi>10.3390/microorganisms11122994</doi><orcidid>https://orcid.org/0000-0001-9874-382X</orcidid><orcidid>https://orcid.org/0000-0003-1887-2491</orcidid><orcidid>https://orcid.org/0000-0001-7411-6186</orcidid><orcidid>https://orcid.org/0000-0003-2708-1835</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-2607 |
ispartof | Microorganisms (Basel), 2023-12, Vol.11 (12), p.2994 |
issn | 2076-2607 2076-2607 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b16fd88863254e9a9882b215874dc8df |
source | PubMed Central(OpenAccess); Publicly Available Content (ProQuest) |
subjects | Agricultural wastes Algae Algicides Alternative energy sources Animal wastes Aquatic environment Aquatic microorganisms Bacteria Biodiversity biofilm Biofilms Biogas Biomass Carbon dioxide Community structure Datasets environmental microbiome structure Gene sequencing Genetic testing Heavy metals Herbicides Manures Metabolism Metabolites Microalgae microalga–bacteria consortia Microbial activity microbial biodiversity Microbial mats Microbiological research Microbiomes Microorganisms Municipal wastewater Nitrogen Nutrient removal Parasites Phosphorus Pig manure Pollutants Prokaryotes Purification Resource recovery rRNA 16S Saprophytes Sewage Structure-function relationships Substrates taxonomic profiling Taxonomy Turf wastewater Wastewater treatment Water treatment |
title | Microbial Diversity and Community Structure of Wastewater-Driven Microalgal Biofilms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A15%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20Diversity%20and%20Community%20Structure%20of%20Wastewater-Driven%20Microalgal%20Biofilms&rft.jtitle=Microorganisms%20(Basel)&rft.au=Blifernez-Klassen,%20Olga&rft.date=2023-12-01&rft.volume=11&rft.issue=12&rft.spage=2994&rft.pages=2994-&rft.issn=2076-2607&rft.eissn=2076-2607&rft_id=info:doi/10.3390/microorganisms11122994&rft_dat=%3Cgale_doaj_%3EA779213215%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-267b05bbf919bdc50f1b4561f0130de3a31ea0ee076e1b4bef89f545cb43817f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2904852491&rft_id=info:pmid/38138138&rft_galeid=A779213215&rfr_iscdi=true |