Loading…

Microbial Diversity and Community Structure of Wastewater-Driven Microalgal Biofilms

Dwindling water sources increase the need for efficient wastewater treatment. Solar-driven algal turf scrubber (ATS) system may remediate wastewater by supporting the development and growth of periphytic microbiomes that function and interact in a highly dynamic manner through symbiotic interactions...

Full description

Saved in:
Bibliographic Details
Published in:Microorganisms (Basel) 2023-12, Vol.11 (12), p.2994
Main Authors: Blifernez-Klassen, Olga, Hassa, Julia, Reinecke, Diana L, Busche, Tobias, Klassen, Viktor, Kruse, Olaf
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c439t-267b05bbf919bdc50f1b4561f0130de3a31ea0ee076e1b4bef89f545cb43817f3
container_end_page
container_issue 12
container_start_page 2994
container_title Microorganisms (Basel)
container_volume 11
creator Blifernez-Klassen, Olga
Hassa, Julia
Reinecke, Diana L
Busche, Tobias
Klassen, Viktor
Kruse, Olaf
description Dwindling water sources increase the need for efficient wastewater treatment. Solar-driven algal turf scrubber (ATS) system may remediate wastewater by supporting the development and growth of periphytic microbiomes that function and interact in a highly dynamic manner through symbiotic interactions. Using ITS and 16S rRNA gene amplicon sequencing, we profiled the microbial communities of four microbial biofilms from ATS systems operated with municipal wastewater (mWW), diluted cattle and pig manure (CattleM and PigM), and biogas plant effluent supernatant (BGE) in comparison to the initial inocula and the respective wastewater substrates. The wastewater-driven biofilms differed significantly in their biodiversity and structure, exhibiting an inocula-independent but substrate-dependent establishment of the microbial communities. The prokaryotic communities were comparable among themselves and with other microbiomes of aquatic environments and were dominated by metabolically flexible prokaryotes such as nitrifiers, polyphosphate-accumulating and algicide-producing microorganisms, and anoxygenic photoautotrophs. Striking differences occurred in eukaryotic communities: While the mWW biofilm was characterized by high biodiversity and many filamentous (benthic) microalgae, the agricultural wastewater-fed biofilms consisted of less diverse communities with few benthic taxa mainly inhabited by unicellular chlorophytes and saprophytes/parasites. This study advances our understanding of the microbiome structure and function within the ATS-based wastewater treatment process.
doi_str_mv 10.3390/microorganisms11122994
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b16fd88863254e9a9882b215874dc8df</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A779213215</galeid><doaj_id>oai_doaj_org_article_b16fd88863254e9a9882b215874dc8df</doaj_id><sourcerecordid>A779213215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-267b05bbf919bdc50f1b4561f0130de3a31ea0ee076e1b4bef89f545cb43817f3</originalsourceid><addsrcrecordid>eNptUV1rFDEUDaLYsvYvlAFffNmaz5nksW79KFR8sOJjSDI3JcvMpCYzSv-9d3ZrETEJ5Oucw7nnEnLO6IUQhr4dUyg5lzs3pTpWxhjnxshn5JTTrt3ylnbP_zqfkLNa9xSHYUIr9pKcCM0O65Tcfl61fHJDc5V-Qqlpfmjc1De7PI7LtN6-zmUJ81KgybH57uoMv9wMZXtVkDA1BwE33KHCu5RjGsb6iryIbqhw9rhvyLcP7293n7Y3Xz5e7y5vtkEKM6O5zlPlfTTM-D4oGpmXqmWRMkF7EE4wcBQACwH88RC1iUqq4CW676LYkOujbp_d3t6XNLryYLNL9vCACVlX5hQGsJ61sddat4IrCcYZrbnnTOlO9kH3q9abo9Z9yT8WqLMdUw0wDG6CvFTLDVWKC6YUQl__A93npUxY6YqSWnGJSW_IxRGFyYBNU8xzcQFnD9i_PAFGBfay6wxnAp0goT0SMM9aC8Snihi1a9_t__uOxPNHP4sfoX-i_emy-A1Lpaxp</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904852491</pqid></control><display><type>article</type><title>Microbial Diversity and Community Structure of Wastewater-Driven Microalgal Biofilms</title><source>PubMed Central(OpenAccess)</source><source>Publicly Available Content (ProQuest)</source><creator>Blifernez-Klassen, Olga ; Hassa, Julia ; Reinecke, Diana L ; Busche, Tobias ; Klassen, Viktor ; Kruse, Olaf</creator><creatorcontrib>Blifernez-Klassen, Olga ; Hassa, Julia ; Reinecke, Diana L ; Busche, Tobias ; Klassen, Viktor ; Kruse, Olaf</creatorcontrib><description>Dwindling water sources increase the need for efficient wastewater treatment. Solar-driven algal turf scrubber (ATS) system may remediate wastewater by supporting the development and growth of periphytic microbiomes that function and interact in a highly dynamic manner through symbiotic interactions. Using ITS and 16S rRNA gene amplicon sequencing, we profiled the microbial communities of four microbial biofilms from ATS systems operated with municipal wastewater (mWW), diluted cattle and pig manure (CattleM and PigM), and biogas plant effluent supernatant (BGE) in comparison to the initial inocula and the respective wastewater substrates. The wastewater-driven biofilms differed significantly in their biodiversity and structure, exhibiting an inocula-independent but substrate-dependent establishment of the microbial communities. The prokaryotic communities were comparable among themselves and with other microbiomes of aquatic environments and were dominated by metabolically flexible prokaryotes such as nitrifiers, polyphosphate-accumulating and algicide-producing microorganisms, and anoxygenic photoautotrophs. Striking differences occurred in eukaryotic communities: While the mWW biofilm was characterized by high biodiversity and many filamentous (benthic) microalgae, the agricultural wastewater-fed biofilms consisted of less diverse communities with few benthic taxa mainly inhabited by unicellular chlorophytes and saprophytes/parasites. This study advances our understanding of the microbiome structure and function within the ATS-based wastewater treatment process.</description><identifier>ISSN: 2076-2607</identifier><identifier>EISSN: 2076-2607</identifier><identifier>DOI: 10.3390/microorganisms11122994</identifier><identifier>PMID: 38138138</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Agricultural wastes ; Algae ; Algicides ; Alternative energy sources ; Animal wastes ; Aquatic environment ; Aquatic microorganisms ; Bacteria ; Biodiversity ; biofilm ; Biofilms ; Biogas ; Biomass ; Carbon dioxide ; Community structure ; Datasets ; environmental microbiome structure ; Gene sequencing ; Genetic testing ; Heavy metals ; Herbicides ; Manures ; Metabolism ; Metabolites ; Microalgae ; microalga–bacteria consortia ; Microbial activity ; microbial biodiversity ; Microbial mats ; Microbiological research ; Microbiomes ; Microorganisms ; Municipal wastewater ; Nitrogen ; Nutrient removal ; Parasites ; Phosphorus ; Pig manure ; Pollutants ; Prokaryotes ; Purification ; Resource recovery ; rRNA 16S ; Saprophytes ; Sewage ; Structure-function relationships ; Substrates ; taxonomic profiling ; Taxonomy ; Turf ; wastewater ; Wastewater treatment ; Water treatment</subject><ispartof>Microorganisms (Basel), 2023-12, Vol.11 (12), p.2994</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c439t-267b05bbf919bdc50f1b4561f0130de3a31ea0ee076e1b4bef89f545cb43817f3</cites><orcidid>0000-0001-9874-382X ; 0000-0003-1887-2491 ; 0000-0001-7411-6186 ; 0000-0003-2708-1835</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2904852491/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2904852491?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,36992,44569,74873</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38138138$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Blifernez-Klassen, Olga</creatorcontrib><creatorcontrib>Hassa, Julia</creatorcontrib><creatorcontrib>Reinecke, Diana L</creatorcontrib><creatorcontrib>Busche, Tobias</creatorcontrib><creatorcontrib>Klassen, Viktor</creatorcontrib><creatorcontrib>Kruse, Olaf</creatorcontrib><title>Microbial Diversity and Community Structure of Wastewater-Driven Microalgal Biofilms</title><title>Microorganisms (Basel)</title><addtitle>Microorganisms</addtitle><description>Dwindling water sources increase the need for efficient wastewater treatment. Solar-driven algal turf scrubber (ATS) system may remediate wastewater by supporting the development and growth of periphytic microbiomes that function and interact in a highly dynamic manner through symbiotic interactions. Using ITS and 16S rRNA gene amplicon sequencing, we profiled the microbial communities of four microbial biofilms from ATS systems operated with municipal wastewater (mWW), diluted cattle and pig manure (CattleM and PigM), and biogas plant effluent supernatant (BGE) in comparison to the initial inocula and the respective wastewater substrates. The wastewater-driven biofilms differed significantly in their biodiversity and structure, exhibiting an inocula-independent but substrate-dependent establishment of the microbial communities. The prokaryotic communities were comparable among themselves and with other microbiomes of aquatic environments and were dominated by metabolically flexible prokaryotes such as nitrifiers, polyphosphate-accumulating and algicide-producing microorganisms, and anoxygenic photoautotrophs. Striking differences occurred in eukaryotic communities: While the mWW biofilm was characterized by high biodiversity and many filamentous (benthic) microalgae, the agricultural wastewater-fed biofilms consisted of less diverse communities with few benthic taxa mainly inhabited by unicellular chlorophytes and saprophytes/parasites. This study advances our understanding of the microbiome structure and function within the ATS-based wastewater treatment process.</description><subject>Agricultural wastes</subject><subject>Algae</subject><subject>Algicides</subject><subject>Alternative energy sources</subject><subject>Animal wastes</subject><subject>Aquatic environment</subject><subject>Aquatic microorganisms</subject><subject>Bacteria</subject><subject>Biodiversity</subject><subject>biofilm</subject><subject>Biofilms</subject><subject>Biogas</subject><subject>Biomass</subject><subject>Carbon dioxide</subject><subject>Community structure</subject><subject>Datasets</subject><subject>environmental microbiome structure</subject><subject>Gene sequencing</subject><subject>Genetic testing</subject><subject>Heavy metals</subject><subject>Herbicides</subject><subject>Manures</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Microalgae</subject><subject>microalga–bacteria consortia</subject><subject>Microbial activity</subject><subject>microbial biodiversity</subject><subject>Microbial mats</subject><subject>Microbiological research</subject><subject>Microbiomes</subject><subject>Microorganisms</subject><subject>Municipal wastewater</subject><subject>Nitrogen</subject><subject>Nutrient removal</subject><subject>Parasites</subject><subject>Phosphorus</subject><subject>Pig manure</subject><subject>Pollutants</subject><subject>Prokaryotes</subject><subject>Purification</subject><subject>Resource recovery</subject><subject>rRNA 16S</subject><subject>Saprophytes</subject><subject>Sewage</subject><subject>Structure-function relationships</subject><subject>Substrates</subject><subject>taxonomic profiling</subject><subject>Taxonomy</subject><subject>Turf</subject><subject>wastewater</subject><subject>Wastewater treatment</subject><subject>Water treatment</subject><issn>2076-2607</issn><issn>2076-2607</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUV1rFDEUDaLYsvYvlAFffNmaz5nksW79KFR8sOJjSDI3JcvMpCYzSv-9d3ZrETEJ5Oucw7nnEnLO6IUQhr4dUyg5lzs3pTpWxhjnxshn5JTTrt3ylnbP_zqfkLNa9xSHYUIr9pKcCM0O65Tcfl61fHJDc5V-Qqlpfmjc1De7PI7LtN6-zmUJ81KgybH57uoMv9wMZXtVkDA1BwE33KHCu5RjGsb6iryIbqhw9rhvyLcP7293n7Y3Xz5e7y5vtkEKM6O5zlPlfTTM-D4oGpmXqmWRMkF7EE4wcBQACwH88RC1iUqq4CW676LYkOujbp_d3t6XNLryYLNL9vCACVlX5hQGsJ61sddat4IrCcYZrbnnTOlO9kH3q9abo9Z9yT8WqLMdUw0wDG6CvFTLDVWKC6YUQl__A93npUxY6YqSWnGJSW_IxRGFyYBNU8xzcQFnD9i_PAFGBfay6wxnAp0goT0SMM9aC8Snihi1a9_t__uOxPNHP4sfoX-i_emy-A1Lpaxp</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Blifernez-Klassen, Olga</creator><creator>Hassa, Julia</creator><creator>Reinecke, Diana L</creator><creator>Busche, Tobias</creator><creator>Klassen, Viktor</creator><creator>Kruse, Olaf</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T7</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9874-382X</orcidid><orcidid>https://orcid.org/0000-0003-1887-2491</orcidid><orcidid>https://orcid.org/0000-0001-7411-6186</orcidid><orcidid>https://orcid.org/0000-0003-2708-1835</orcidid></search><sort><creationdate>20231201</creationdate><title>Microbial Diversity and Community Structure of Wastewater-Driven Microalgal Biofilms</title><author>Blifernez-Klassen, Olga ; Hassa, Julia ; Reinecke, Diana L ; Busche, Tobias ; Klassen, Viktor ; Kruse, Olaf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-267b05bbf919bdc50f1b4561f0130de3a31ea0ee076e1b4bef89f545cb43817f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agricultural wastes</topic><topic>Algae</topic><topic>Algicides</topic><topic>Alternative energy sources</topic><topic>Animal wastes</topic><topic>Aquatic environment</topic><topic>Aquatic microorganisms</topic><topic>Bacteria</topic><topic>Biodiversity</topic><topic>biofilm</topic><topic>Biofilms</topic><topic>Biogas</topic><topic>Biomass</topic><topic>Carbon dioxide</topic><topic>Community structure</topic><topic>Datasets</topic><topic>environmental microbiome structure</topic><topic>Gene sequencing</topic><topic>Genetic testing</topic><topic>Heavy metals</topic><topic>Herbicides</topic><topic>Manures</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Microalgae</topic><topic>microalga–bacteria consortia</topic><topic>Microbial activity</topic><topic>microbial biodiversity</topic><topic>Microbial mats</topic><topic>Microbiological research</topic><topic>Microbiomes</topic><topic>Microorganisms</topic><topic>Municipal wastewater</topic><topic>Nitrogen</topic><topic>Nutrient removal</topic><topic>Parasites</topic><topic>Phosphorus</topic><topic>Pig manure</topic><topic>Pollutants</topic><topic>Prokaryotes</topic><topic>Purification</topic><topic>Resource recovery</topic><topic>rRNA 16S</topic><topic>Saprophytes</topic><topic>Sewage</topic><topic>Structure-function relationships</topic><topic>Substrates</topic><topic>taxonomic profiling</topic><topic>Taxonomy</topic><topic>Turf</topic><topic>wastewater</topic><topic>Wastewater treatment</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blifernez-Klassen, Olga</creatorcontrib><creatorcontrib>Hassa, Julia</creatorcontrib><creatorcontrib>Reinecke, Diana L</creatorcontrib><creatorcontrib>Busche, Tobias</creatorcontrib><creatorcontrib>Klassen, Viktor</creatorcontrib><creatorcontrib>Kruse, Olaf</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Microorganisms (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blifernez-Klassen, Olga</au><au>Hassa, Julia</au><au>Reinecke, Diana L</au><au>Busche, Tobias</au><au>Klassen, Viktor</au><au>Kruse, Olaf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial Diversity and Community Structure of Wastewater-Driven Microalgal Biofilms</atitle><jtitle>Microorganisms (Basel)</jtitle><addtitle>Microorganisms</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>11</volume><issue>12</issue><spage>2994</spage><pages>2994-</pages><issn>2076-2607</issn><eissn>2076-2607</eissn><abstract>Dwindling water sources increase the need for efficient wastewater treatment. Solar-driven algal turf scrubber (ATS) system may remediate wastewater by supporting the development and growth of periphytic microbiomes that function and interact in a highly dynamic manner through symbiotic interactions. Using ITS and 16S rRNA gene amplicon sequencing, we profiled the microbial communities of four microbial biofilms from ATS systems operated with municipal wastewater (mWW), diluted cattle and pig manure (CattleM and PigM), and biogas plant effluent supernatant (BGE) in comparison to the initial inocula and the respective wastewater substrates. The wastewater-driven biofilms differed significantly in their biodiversity and structure, exhibiting an inocula-independent but substrate-dependent establishment of the microbial communities. The prokaryotic communities were comparable among themselves and with other microbiomes of aquatic environments and were dominated by metabolically flexible prokaryotes such as nitrifiers, polyphosphate-accumulating and algicide-producing microorganisms, and anoxygenic photoautotrophs. Striking differences occurred in eukaryotic communities: While the mWW biofilm was characterized by high biodiversity and many filamentous (benthic) microalgae, the agricultural wastewater-fed biofilms consisted of less diverse communities with few benthic taxa mainly inhabited by unicellular chlorophytes and saprophytes/parasites. This study advances our understanding of the microbiome structure and function within the ATS-based wastewater treatment process.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38138138</pmid><doi>10.3390/microorganisms11122994</doi><orcidid>https://orcid.org/0000-0001-9874-382X</orcidid><orcidid>https://orcid.org/0000-0003-1887-2491</orcidid><orcidid>https://orcid.org/0000-0001-7411-6186</orcidid><orcidid>https://orcid.org/0000-0003-2708-1835</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-2607
ispartof Microorganisms (Basel), 2023-12, Vol.11 (12), p.2994
issn 2076-2607
2076-2607
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b16fd88863254e9a9882b215874dc8df
source PubMed Central(OpenAccess); Publicly Available Content (ProQuest)
subjects Agricultural wastes
Algae
Algicides
Alternative energy sources
Animal wastes
Aquatic environment
Aquatic microorganisms
Bacteria
Biodiversity
biofilm
Biofilms
Biogas
Biomass
Carbon dioxide
Community structure
Datasets
environmental microbiome structure
Gene sequencing
Genetic testing
Heavy metals
Herbicides
Manures
Metabolism
Metabolites
Microalgae
microalga–bacteria consortia
Microbial activity
microbial biodiversity
Microbial mats
Microbiological research
Microbiomes
Microorganisms
Municipal wastewater
Nitrogen
Nutrient removal
Parasites
Phosphorus
Pig manure
Pollutants
Prokaryotes
Purification
Resource recovery
rRNA 16S
Saprophytes
Sewage
Structure-function relationships
Substrates
taxonomic profiling
Taxonomy
Turf
wastewater
Wastewater treatment
Water treatment
title Microbial Diversity and Community Structure of Wastewater-Driven Microalgal Biofilms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A15%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20Diversity%20and%20Community%20Structure%20of%20Wastewater-Driven%20Microalgal%20Biofilms&rft.jtitle=Microorganisms%20(Basel)&rft.au=Blifernez-Klassen,%20Olga&rft.date=2023-12-01&rft.volume=11&rft.issue=12&rft.spage=2994&rft.pages=2994-&rft.issn=2076-2607&rft.eissn=2076-2607&rft_id=info:doi/10.3390/microorganisms11122994&rft_dat=%3Cgale_doaj_%3EA779213215%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-267b05bbf919bdc50f1b4561f0130de3a31ea0ee076e1b4bef89f545cb43817f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2904852491&rft_id=info:pmid/38138138&rft_galeid=A779213215&rfr_iscdi=true