Loading…
Multi-Channel Long-Distance Audio Transmission System Using Power-over-Fiber Technology
To establish stable communication networks in harsh environments where power supply is difficult, such as coal mines and underwater, we propose an effective scheme for co-transmission of analog audio signals and energy. By leveraging the advantages of optical fibers, such as corrosion resistance and...
Saved in:
Published in: | Photonics 2023-05, Vol.10 (5), p.521 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To establish stable communication networks in harsh environments where power supply is difficult, such as coal mines and underwater, we propose an effective scheme for co-transmission of analog audio signals and energy. By leveraging the advantages of optical fibers, such as corrosion resistance and strong resistance to electromagnetic interference, the scheme uses a 1550 nm laser beam as the carrier for analog audio signal propagation, which is then converted to electrical energy through a custom InGaAs/InP photovoltaic power converter (PPC) for energy supply and information transfer without an external power supply after a 25 km fiber transmission. In the experiment, with 160 mW of optical power injection, the scheme not only provides 4 mW of electrical power, but also transmits an analog signal with an acoustic overload point (AOP) of 105 dBSPL and a signal-to-noise ratio (SNR) of 50 dB. In addition, the system employs wavelength division multiplexing (WDM) technology to transform from single-channel to multi-channel communication on a single independent fiber, enabling the arraying of receiving terminals. The passive arrayed terminals make the multi-channel long-distance audio transmission system using power-over-fiber (PoF) technology a superior choice for establishing a stable communication network in harsh environments. |
---|---|
ISSN: | 2304-6732 2304-6732 |
DOI: | 10.3390/photonics10050521 |