Loading…
ACROPOLIS: A graphical user interface for classification of risk for off-stream reservoirs using machine learning
Potential risk identification due to off-stream reservoir failure typically requires the use of two-dimensional hydraulic models, which demands considerable effort in terms of expertise, time and financial resources. Unfortunately, not all reservoir owners have access to these resources, and the pro...
Saved in:
Published in: | SoftwareX 2024-05, Vol.26, p.101657, Article 101657 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-eaedfa068b8311ccb34619e3fe66375807f558f02769549518ceadbef9b356d63 |
container_end_page | |
container_issue | |
container_start_page | 101657 |
container_title | SoftwareX |
container_volume | 26 |
creator | Silva-Cancino, Nathalia Salazar, Fernando Bladé, Ernest |
description | Potential risk identification due to off-stream reservoir failure typically requires the use of two-dimensional hydraulic models, which demands considerable effort in terms of expertise, time and financial resources. Unfortunately, not all reservoir owners have access to these resources, and the process of assessing hazard classifications for administrations can be burdensome. ACROPOLIS was developed to address this challenge, employing a Machine Learning model to provide a preliminary risk classification according to Spanish regulations for off-stream reservoirs without the necessity of building a hydraulic model. This approach has been integrated into a user-friendly interface, simplifying the process for users. |
doi_str_mv | 10.1016/j.softx.2024.101657 |
format | article |
fullrecord | <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b19839ed274c488e913315c9e04ce277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352711024000281</els_id><doaj_id>oai_doaj_org_article_b19839ed274c488e913315c9e04ce277</doaj_id><sourcerecordid>S2352711024000281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-eaedfa068b8311ccb34619e3fe66375807f558f02769549518ceadbef9b356d63</originalsourceid><addsrcrecordid>eNp9kdtKAzEQhhdRULRP4E1eYGsOm2xW8KIUD4VCxcN1yGYnbep2o5NV9O3dtiJeeTXDP_wfM_Nn2TmjY0aZuliPU_T955hTXuwUWR5kJ1xInpeM0cM__XE2SmlNKWWSa8mLk-xtMn1Y3C_ms8dLMiFLtK-r4GxL3hMgCV0P6K0D4iMS19qUgh_GfYgdiZ5gSC-7UfQ-Tz2C3RCEwfkRA6aBEbol2Vi3Ch2QFix2g3CWHXnbJhj91NPs-eb6aXqXzxe3s-lknjuhij4HC423VOlaC8acq0WhWAXCg1KilJqWXkrtKS9VJYtKMu3ANjX4qhZSNUqcZrM9t4l2bV4xbCx-mWiD2QkRl8ZiH1wLpmaVFhU0vCxcoTVUTAgmXQW0cMDLcmCJPcthTAnB__IYNduXm7XZhWC2IZh9CIPrau-C4cyPAGiSC9A5aAKC64c9wr_-b637kVU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ACROPOLIS: A graphical user interface for classification of risk for off-stream reservoirs using machine learning</title><source>ScienceDirect®</source><creator>Silva-Cancino, Nathalia ; Salazar, Fernando ; Bladé, Ernest</creator><creatorcontrib>Silva-Cancino, Nathalia ; Salazar, Fernando ; Bladé, Ernest</creatorcontrib><description>Potential risk identification due to off-stream reservoir failure typically requires the use of two-dimensional hydraulic models, which demands considerable effort in terms of expertise, time and financial resources. Unfortunately, not all reservoir owners have access to these resources, and the process of assessing hazard classifications for administrations can be burdensome. ACROPOLIS was developed to address this challenge, employing a Machine Learning model to provide a preliminary risk classification according to Spanish regulations for off-stream reservoirs without the necessity of building a hydraulic model. This approach has been integrated into a user-friendly interface, simplifying the process for users.</description><identifier>ISSN: 2352-7110</identifier><identifier>EISSN: 2352-7110</identifier><identifier>DOI: 10.1016/j.softx.2024.101657</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Dam break ; Machine learning ; Off-stream reservoir ; Potential risk</subject><ispartof>SoftwareX, 2024-05, Vol.26, p.101657, Article 101657</ispartof><rights>2024 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c364t-eaedfa068b8311ccb34619e3fe66375807f558f02769549518ceadbef9b356d63</cites><orcidid>0000-0001-5823-7017</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2352711024000281$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Silva-Cancino, Nathalia</creatorcontrib><creatorcontrib>Salazar, Fernando</creatorcontrib><creatorcontrib>Bladé, Ernest</creatorcontrib><title>ACROPOLIS: A graphical user interface for classification of risk for off-stream reservoirs using machine learning</title><title>SoftwareX</title><description>Potential risk identification due to off-stream reservoir failure typically requires the use of two-dimensional hydraulic models, which demands considerable effort in terms of expertise, time and financial resources. Unfortunately, not all reservoir owners have access to these resources, and the process of assessing hazard classifications for administrations can be burdensome. ACROPOLIS was developed to address this challenge, employing a Machine Learning model to provide a preliminary risk classification according to Spanish regulations for off-stream reservoirs without the necessity of building a hydraulic model. This approach has been integrated into a user-friendly interface, simplifying the process for users.</description><subject>Dam break</subject><subject>Machine learning</subject><subject>Off-stream reservoir</subject><subject>Potential risk</subject><issn>2352-7110</issn><issn>2352-7110</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kdtKAzEQhhdRULRP4E1eYGsOm2xW8KIUD4VCxcN1yGYnbep2o5NV9O3dtiJeeTXDP_wfM_Nn2TmjY0aZuliPU_T955hTXuwUWR5kJ1xInpeM0cM__XE2SmlNKWWSa8mLk-xtMn1Y3C_ms8dLMiFLtK-r4GxL3hMgCV0P6K0D4iMS19qUgh_GfYgdiZ5gSC-7UfQ-Tz2C3RCEwfkRA6aBEbol2Vi3Ch2QFix2g3CWHXnbJhj91NPs-eb6aXqXzxe3s-lknjuhij4HC423VOlaC8acq0WhWAXCg1KilJqWXkrtKS9VJYtKMu3ANjX4qhZSNUqcZrM9t4l2bV4xbCx-mWiD2QkRl8ZiH1wLpmaVFhU0vCxcoTVUTAgmXQW0cMDLcmCJPcthTAnB__IYNduXm7XZhWC2IZh9CIPrau-C4cyPAGiSC9A5aAKC64c9wr_-b637kVU</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Silva-Cancino, Nathalia</creator><creator>Salazar, Fernando</creator><creator>Bladé, Ernest</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5823-7017</orcidid></search><sort><creationdate>202405</creationdate><title>ACROPOLIS: A graphical user interface for classification of risk for off-stream reservoirs using machine learning</title><author>Silva-Cancino, Nathalia ; Salazar, Fernando ; Bladé, Ernest</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-eaedfa068b8311ccb34619e3fe66375807f558f02769549518ceadbef9b356d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Dam break</topic><topic>Machine learning</topic><topic>Off-stream reservoir</topic><topic>Potential risk</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva-Cancino, Nathalia</creatorcontrib><creatorcontrib>Salazar, Fernando</creatorcontrib><creatorcontrib>Bladé, Ernest</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>SoftwareX</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva-Cancino, Nathalia</au><au>Salazar, Fernando</au><au>Bladé, Ernest</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ACROPOLIS: A graphical user interface for classification of risk for off-stream reservoirs using machine learning</atitle><jtitle>SoftwareX</jtitle><date>2024-05</date><risdate>2024</risdate><volume>26</volume><spage>101657</spage><pages>101657-</pages><artnum>101657</artnum><issn>2352-7110</issn><eissn>2352-7110</eissn><abstract>Potential risk identification due to off-stream reservoir failure typically requires the use of two-dimensional hydraulic models, which demands considerable effort in terms of expertise, time and financial resources. Unfortunately, not all reservoir owners have access to these resources, and the process of assessing hazard classifications for administrations can be burdensome. ACROPOLIS was developed to address this challenge, employing a Machine Learning model to provide a preliminary risk classification according to Spanish regulations for off-stream reservoirs without the necessity of building a hydraulic model. This approach has been integrated into a user-friendly interface, simplifying the process for users.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.softx.2024.101657</doi><orcidid>https://orcid.org/0000-0001-5823-7017</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2352-7110 |
ispartof | SoftwareX, 2024-05, Vol.26, p.101657, Article 101657 |
issn | 2352-7110 2352-7110 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b19839ed274c488e913315c9e04ce277 |
source | ScienceDirect® |
subjects | Dam break Machine learning Off-stream reservoir Potential risk |
title | ACROPOLIS: A graphical user interface for classification of risk for off-stream reservoirs using machine learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A16%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ACROPOLIS:%20A%20graphical%20user%20interface%20for%20classification%20of%20risk%20for%20off-stream%20reservoirs%20using%20machine%20learning&rft.jtitle=SoftwareX&rft.au=Silva-Cancino,%20Nathalia&rft.date=2024-05&rft.volume=26&rft.spage=101657&rft.pages=101657-&rft.artnum=101657&rft.issn=2352-7110&rft.eissn=2352-7110&rft_id=info:doi/10.1016/j.softx.2024.101657&rft_dat=%3Celsevier_doaj_%3ES2352711024000281%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-eaedfa068b8311ccb34619e3fe66375807f558f02769549518ceadbef9b356d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |