Loading…

ACROPOLIS: A graphical user interface for classification of risk for off-stream reservoirs using machine learning

Potential risk identification due to off-stream reservoir failure typically requires the use of two-dimensional hydraulic models, which demands considerable effort in terms of expertise, time and financial resources. Unfortunately, not all reservoir owners have access to these resources, and the pro...

Full description

Saved in:
Bibliographic Details
Published in:SoftwareX 2024-05, Vol.26, p.101657, Article 101657
Main Authors: Silva-Cancino, Nathalia, Salazar, Fernando, Bladé, Ernest
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c364t-eaedfa068b8311ccb34619e3fe66375807f558f02769549518ceadbef9b356d63
container_end_page
container_issue
container_start_page 101657
container_title SoftwareX
container_volume 26
creator Silva-Cancino, Nathalia
Salazar, Fernando
Bladé, Ernest
description Potential risk identification due to off-stream reservoir failure typically requires the use of two-dimensional hydraulic models, which demands considerable effort in terms of expertise, time and financial resources. Unfortunately, not all reservoir owners have access to these resources, and the process of assessing hazard classifications for administrations can be burdensome. ACROPOLIS was developed to address this challenge, employing a Machine Learning model to provide a preliminary risk classification according to Spanish regulations for off-stream reservoirs without the necessity of building a hydraulic model. This approach has been integrated into a user-friendly interface, simplifying the process for users.
doi_str_mv 10.1016/j.softx.2024.101657
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b19839ed274c488e913315c9e04ce277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352711024000281</els_id><doaj_id>oai_doaj_org_article_b19839ed274c488e913315c9e04ce277</doaj_id><sourcerecordid>S2352711024000281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-eaedfa068b8311ccb34619e3fe66375807f558f02769549518ceadbef9b356d63</originalsourceid><addsrcrecordid>eNp9kdtKAzEQhhdRULRP4E1eYGsOm2xW8KIUD4VCxcN1yGYnbep2o5NV9O3dtiJeeTXDP_wfM_Nn2TmjY0aZuliPU_T955hTXuwUWR5kJ1xInpeM0cM__XE2SmlNKWWSa8mLk-xtMn1Y3C_ms8dLMiFLtK-r4GxL3hMgCV0P6K0D4iMS19qUgh_GfYgdiZ5gSC-7UfQ-Tz2C3RCEwfkRA6aBEbol2Vi3Ch2QFix2g3CWHXnbJhj91NPs-eb6aXqXzxe3s-lknjuhij4HC423VOlaC8acq0WhWAXCg1KilJqWXkrtKS9VJYtKMu3ANjX4qhZSNUqcZrM9t4l2bV4xbCx-mWiD2QkRl8ZiH1wLpmaVFhU0vCxcoTVUTAgmXQW0cMDLcmCJPcthTAnB__IYNduXm7XZhWC2IZh9CIPrau-C4cyPAGiSC9A5aAKC64c9wr_-b637kVU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ACROPOLIS: A graphical user interface for classification of risk for off-stream reservoirs using machine learning</title><source>ScienceDirect®</source><creator>Silva-Cancino, Nathalia ; Salazar, Fernando ; Bladé, Ernest</creator><creatorcontrib>Silva-Cancino, Nathalia ; Salazar, Fernando ; Bladé, Ernest</creatorcontrib><description>Potential risk identification due to off-stream reservoir failure typically requires the use of two-dimensional hydraulic models, which demands considerable effort in terms of expertise, time and financial resources. Unfortunately, not all reservoir owners have access to these resources, and the process of assessing hazard classifications for administrations can be burdensome. ACROPOLIS was developed to address this challenge, employing a Machine Learning model to provide a preliminary risk classification according to Spanish regulations for off-stream reservoirs without the necessity of building a hydraulic model. This approach has been integrated into a user-friendly interface, simplifying the process for users.</description><identifier>ISSN: 2352-7110</identifier><identifier>EISSN: 2352-7110</identifier><identifier>DOI: 10.1016/j.softx.2024.101657</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Dam break ; Machine learning ; Off-stream reservoir ; Potential risk</subject><ispartof>SoftwareX, 2024-05, Vol.26, p.101657, Article 101657</ispartof><rights>2024 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c364t-eaedfa068b8311ccb34619e3fe66375807f558f02769549518ceadbef9b356d63</cites><orcidid>0000-0001-5823-7017</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2352711024000281$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Silva-Cancino, Nathalia</creatorcontrib><creatorcontrib>Salazar, Fernando</creatorcontrib><creatorcontrib>Bladé, Ernest</creatorcontrib><title>ACROPOLIS: A graphical user interface for classification of risk for off-stream reservoirs using machine learning</title><title>SoftwareX</title><description>Potential risk identification due to off-stream reservoir failure typically requires the use of two-dimensional hydraulic models, which demands considerable effort in terms of expertise, time and financial resources. Unfortunately, not all reservoir owners have access to these resources, and the process of assessing hazard classifications for administrations can be burdensome. ACROPOLIS was developed to address this challenge, employing a Machine Learning model to provide a preliminary risk classification according to Spanish regulations for off-stream reservoirs without the necessity of building a hydraulic model. This approach has been integrated into a user-friendly interface, simplifying the process for users.</description><subject>Dam break</subject><subject>Machine learning</subject><subject>Off-stream reservoir</subject><subject>Potential risk</subject><issn>2352-7110</issn><issn>2352-7110</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kdtKAzEQhhdRULRP4E1eYGsOm2xW8KIUD4VCxcN1yGYnbep2o5NV9O3dtiJeeTXDP_wfM_Nn2TmjY0aZuliPU_T955hTXuwUWR5kJ1xInpeM0cM__XE2SmlNKWWSa8mLk-xtMn1Y3C_ms8dLMiFLtK-r4GxL3hMgCV0P6K0D4iMS19qUgh_GfYgdiZ5gSC-7UfQ-Tz2C3RCEwfkRA6aBEbol2Vi3Ch2QFix2g3CWHXnbJhj91NPs-eb6aXqXzxe3s-lknjuhij4HC423VOlaC8acq0WhWAXCg1KilJqWXkrtKS9VJYtKMu3ANjX4qhZSNUqcZrM9t4l2bV4xbCx-mWiD2QkRl8ZiH1wLpmaVFhU0vCxcoTVUTAgmXQW0cMDLcmCJPcthTAnB__IYNduXm7XZhWC2IZh9CIPrau-C4cyPAGiSC9A5aAKC64c9wr_-b637kVU</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Silva-Cancino, Nathalia</creator><creator>Salazar, Fernando</creator><creator>Bladé, Ernest</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5823-7017</orcidid></search><sort><creationdate>202405</creationdate><title>ACROPOLIS: A graphical user interface for classification of risk for off-stream reservoirs using machine learning</title><author>Silva-Cancino, Nathalia ; Salazar, Fernando ; Bladé, Ernest</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-eaedfa068b8311ccb34619e3fe66375807f558f02769549518ceadbef9b356d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Dam break</topic><topic>Machine learning</topic><topic>Off-stream reservoir</topic><topic>Potential risk</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva-Cancino, Nathalia</creatorcontrib><creatorcontrib>Salazar, Fernando</creatorcontrib><creatorcontrib>Bladé, Ernest</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>SoftwareX</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva-Cancino, Nathalia</au><au>Salazar, Fernando</au><au>Bladé, Ernest</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ACROPOLIS: A graphical user interface for classification of risk for off-stream reservoirs using machine learning</atitle><jtitle>SoftwareX</jtitle><date>2024-05</date><risdate>2024</risdate><volume>26</volume><spage>101657</spage><pages>101657-</pages><artnum>101657</artnum><issn>2352-7110</issn><eissn>2352-7110</eissn><abstract>Potential risk identification due to off-stream reservoir failure typically requires the use of two-dimensional hydraulic models, which demands considerable effort in terms of expertise, time and financial resources. Unfortunately, not all reservoir owners have access to these resources, and the process of assessing hazard classifications for administrations can be burdensome. ACROPOLIS was developed to address this challenge, employing a Machine Learning model to provide a preliminary risk classification according to Spanish regulations for off-stream reservoirs without the necessity of building a hydraulic model. This approach has been integrated into a user-friendly interface, simplifying the process for users.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.softx.2024.101657</doi><orcidid>https://orcid.org/0000-0001-5823-7017</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2352-7110
ispartof SoftwareX, 2024-05, Vol.26, p.101657, Article 101657
issn 2352-7110
2352-7110
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b19839ed274c488e913315c9e04ce277
source ScienceDirect®
subjects Dam break
Machine learning
Off-stream reservoir
Potential risk
title ACROPOLIS: A graphical user interface for classification of risk for off-stream reservoirs using machine learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A16%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ACROPOLIS:%20A%20graphical%20user%20interface%20for%20classification%20of%20risk%20for%20off-stream%20reservoirs%20using%20machine%20learning&rft.jtitle=SoftwareX&rft.au=Silva-Cancino,%20Nathalia&rft.date=2024-05&rft.volume=26&rft.spage=101657&rft.pages=101657-&rft.artnum=101657&rft.issn=2352-7110&rft.eissn=2352-7110&rft_id=info:doi/10.1016/j.softx.2024.101657&rft_dat=%3Celsevier_doaj_%3ES2352711024000281%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-eaedfa068b8311ccb34619e3fe66375807f558f02769549518ceadbef9b356d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true