Loading…
Inelastic Form Factor Calculations for 46,48,50Ti Isotopes Using Tassie Model
Inelastic form factors of electrical transition have been calculated for 46,48,50Ti isotopes using the Tassie model. The form factors have been calculated for different exciting energies. The harmonic oscillator (HO) wave function has been used as a single-particle wave function. The model space has...
Saved in:
Published in: | Science and technology of nuclear installations 2021-01, Vol.2021, p.1-4 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Inelastic form factors of electrical transition have been calculated for 46,48,50Ti isotopes using the Tassie model. The form factors have been calculated for different exciting energies. The harmonic oscillator (HO) wave function has been used as a single-particle wave function. The model space has been considered as 1f7/2, 2p3/2, 2p1/2, and 2f5/2. Gx1 has been used as effective interaction in all calculations. In all calculations, the effective charge has been considered as 1.5e for proton and 0.5e for neutron. All obtained results have been compared with data from an experiment. The calculations show the Tassie model gives a good description of longitudinal form factors of 46,48,50Ti isotopes in E(2+) transitions as compared with experimental data, especially in the region below 2 fm−1 of momentum transfer, but in the E(4+), the theoretical results deviated slightly from experimental data especially in the region greater than 1.5 fm−1 of momentum transfer. |
---|---|
ISSN: | 1687-6075 1687-6083 |
DOI: | 10.1155/2021/6639185 |