Loading…

A Ranking-Based Hashing Algorithm Based on the Distributed Spark Platform

With the rapid development of modern society, generated data has increased exponentially. Finding required data from this huge data pool is an urgent problem that needs to be solved. Hashing technology is widely used in similarity searches of large-scale data. Among them, the ranking-based hashing a...

Full description

Saved in:
Bibliographic Details
Published in:Information (Basel) 2020-03, Vol.11 (3), p.148
Main Authors: Yang, Anbang, Qian, Jiangbo, Chen, Huahui, Dong, Yihong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the rapid development of modern society, generated data has increased exponentially. Finding required data from this huge data pool is an urgent problem that needs to be solved. Hashing technology is widely used in similarity searches of large-scale data. Among them, the ranking-based hashing algorithm has been widely studied due to its accuracy and speed regarding the search results. At present, most ranking-based hashing algorithms construct loss functions by comparing the rank consistency of data in Euclidean and Hamming spaces. However, most of them have high time complexity and long training times, meaning they cannot meet requirements. In order to solve these problems, this paper introduces a distributed Spark framework and implements the ranking-based hashing algorithm in a parallel environment on multiple machines. The experimental results show that the Spark-RLSH (Ranking Listwise Supervision Hashing) can greatly reduce the training time and improve the training efficiency compared with other ranking-based hashing algorithms.
ISSN:2078-2489
2078-2489
DOI:10.3390/info11030148