Loading…
A Low Cost Sensors Approach for Accurate Vehicle Localization and Autonomous Driving Application
Autonomous driving in public roads requires precise localization within the range of few centimeters. Even the best current precise localization system based on the Global Navigation Satellite System (GNSS) can not always reach this level of precision, especially in an urban environment, where the s...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2017-10, Vol.17 (10), p.2359 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c469t-8f53929bf28ad9c1cbd0aa6841df6c9d8947426d3ee91b5bafafb224b7c860553 |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-8f53929bf28ad9c1cbd0aa6841df6c9d8947426d3ee91b5bafafb224b7c860553 |
container_end_page | |
container_issue | 10 |
container_start_page | 2359 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 17 |
creator | Vivacqua, Rafael Vassallo, Raquel Martins, Felipe |
description | Autonomous driving in public roads requires precise localization within the range of few centimeters. Even the best current precise localization system based on the Global Navigation Satellite System (GNSS) can not always reach this level of precision, especially in an urban environment, where the signal is disturbed by surrounding buildings and artifacts. Laser range finder and stereo vision have been successfully used for obstacle detection, mapping and localization to solve the autonomous driving problem. Unfortunately, Light Detection and Ranging (LIDARs) are very expensive sensors and stereo vision requires powerful dedicated hardware to process the cameras information. In this context, this article presents a low-cost architecture of sensors and data fusion algorithm capable of autonomous driving in narrow two-way roads. Our approach exploits a combination of a short-range visual lane marking detector and a dead reckoning system to build a long and precise perception of the lane markings in the vehicle's backwards. This information is used to localize the vehicle in a map, that also contains the reference trajectory for autonomous driving. Experimental results show the successful application of the proposed system on a real autonomous driving situation. |
doi_str_mv | 10.3390/s17102359 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b1de8b6465c74a8fa9d8fe199a8e1d38</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b1de8b6465c74a8fa9d8fe199a8e1d38</doaj_id><sourcerecordid>1965672725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-8f53929bf28ad9c1cbd0aa6841df6c9d8947426d3ee91b5bafafb224b7c860553</originalsourceid><addsrcrecordid>eNpdkklvEzEUgC0EoqVw4A8gS1zKITBex74gjcJWKRIHlqt54yVxNBkHe6YIfj1OU6KWk5_8Pn16G0LPSfOaMd28KaQlDWVCP0DnhFO-UJQ2D-_EZ-hJKdumMoypx-iM6oYJxvg5-tHhVfqFl6lM-IsfS8oFd_t9TmA3OKSMO2vnDJPH3_0m2sFX3MIQ_8AU04hhdLibpzSmXZoLfpfjdRzXB8MQ7Q3yFD0KMBT_7Pa9QN8-vP-6_LRYff54texWC8ulnhYqCKap7gNV4LQltncNgFScuCCtdkrzllPpmPea9KKHAKGnlPetVbIRgl2gq6PXJdiafY47yL9NgmhuPlJeG8jToQPTE-dVL7kUtuWgAlR98ERrUJ44pqrr7dG1n_udd9aPU4bhnvR-Zowbs07XRshWSsmq4PJWkNPP2ZfJ7GKxfhhg9HVOhmhBhBStphV9-R-6TXMe66gqJauQtvTQ3asjZXMqJftwKoY05nAD5nQDlX1xt_oT-W_p7C8kT6zw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1965672725</pqid></control><display><type>article</type><title>A Low Cost Sensors Approach for Accurate Vehicle Localization and Autonomous Driving Application</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Vivacqua, Rafael ; Vassallo, Raquel ; Martins, Felipe</creator><creatorcontrib>Vivacqua, Rafael ; Vassallo, Raquel ; Martins, Felipe</creatorcontrib><description>Autonomous driving in public roads requires precise localization within the range of few centimeters. Even the best current precise localization system based on the Global Navigation Satellite System (GNSS) can not always reach this level of precision, especially in an urban environment, where the signal is disturbed by surrounding buildings and artifacts. Laser range finder and stereo vision have been successfully used for obstacle detection, mapping and localization to solve the autonomous driving problem. Unfortunately, Light Detection and Ranging (LIDARs) are very expensive sensors and stereo vision requires powerful dedicated hardware to process the cameras information. In this context, this article presents a low-cost architecture of sensors and data fusion algorithm capable of autonomous driving in narrow two-way roads. Our approach exploits a combination of a short-range visual lane marking detector and a dead reckoning system to build a long and precise perception of the lane markings in the vehicle's backwards. This information is used to localize the vehicle in a map, that also contains the reference trajectory for autonomous driving. Experimental results show the successful application of the proposed system on a real autonomous driving situation.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s17102359</identifier><identifier>PMID: 29035334</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>autonomous driving ; computer vision ; data fusion ; Data integration ; Dead reckoning ; Driving ; ego-localization ; inertial navigation system ; lane marking detector ; Localization ; Low cost ; map matching ; Multisensor fusion ; Navigation satellites ; Obstacle avoidance ; Sensors</subject><ispartof>Sensors (Basel, Switzerland), 2017-10, Vol.17 (10), p.2359</ispartof><rights>Copyright MDPI AG 2017</rights><rights>2017 by the authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-8f53929bf28ad9c1cbd0aa6841df6c9d8947426d3ee91b5bafafb224b7c860553</citedby><cites>FETCH-LOGICAL-c469t-8f53929bf28ad9c1cbd0aa6841df6c9d8947426d3ee91b5bafafb224b7c860553</cites><orcidid>0000-0002-2342-6835 ; 0000-0003-1032-6162</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1965672725/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1965672725?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29035334$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vivacqua, Rafael</creatorcontrib><creatorcontrib>Vassallo, Raquel</creatorcontrib><creatorcontrib>Martins, Felipe</creatorcontrib><title>A Low Cost Sensors Approach for Accurate Vehicle Localization and Autonomous Driving Application</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Autonomous driving in public roads requires precise localization within the range of few centimeters. Even the best current precise localization system based on the Global Navigation Satellite System (GNSS) can not always reach this level of precision, especially in an urban environment, where the signal is disturbed by surrounding buildings and artifacts. Laser range finder and stereo vision have been successfully used for obstacle detection, mapping and localization to solve the autonomous driving problem. Unfortunately, Light Detection and Ranging (LIDARs) are very expensive sensors and stereo vision requires powerful dedicated hardware to process the cameras information. In this context, this article presents a low-cost architecture of sensors and data fusion algorithm capable of autonomous driving in narrow two-way roads. Our approach exploits a combination of a short-range visual lane marking detector and a dead reckoning system to build a long and precise perception of the lane markings in the vehicle's backwards. This information is used to localize the vehicle in a map, that also contains the reference trajectory for autonomous driving. Experimental results show the successful application of the proposed system on a real autonomous driving situation.</description><subject>autonomous driving</subject><subject>computer vision</subject><subject>data fusion</subject><subject>Data integration</subject><subject>Dead reckoning</subject><subject>Driving</subject><subject>ego-localization</subject><subject>inertial navigation system</subject><subject>lane marking detector</subject><subject>Localization</subject><subject>Low cost</subject><subject>map matching</subject><subject>Multisensor fusion</subject><subject>Navigation satellites</subject><subject>Obstacle avoidance</subject><subject>Sensors</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkklvEzEUgC0EoqVw4A8gS1zKITBex74gjcJWKRIHlqt54yVxNBkHe6YIfj1OU6KWk5_8Pn16G0LPSfOaMd28KaQlDWVCP0DnhFO-UJQ2D-_EZ-hJKdumMoypx-iM6oYJxvg5-tHhVfqFl6lM-IsfS8oFd_t9TmA3OKSMO2vnDJPH3_0m2sFX3MIQ_8AU04hhdLibpzSmXZoLfpfjdRzXB8MQ7Q3yFD0KMBT_7Pa9QN8-vP-6_LRYff54texWC8ulnhYqCKap7gNV4LQltncNgFScuCCtdkrzllPpmPea9KKHAKGnlPetVbIRgl2gq6PXJdiafY47yL9NgmhuPlJeG8jToQPTE-dVL7kUtuWgAlR98ERrUJ44pqrr7dG1n_udd9aPU4bhnvR-Zowbs07XRshWSsmq4PJWkNPP2ZfJ7GKxfhhg9HVOhmhBhBStphV9-R-6TXMe66gqJauQtvTQ3asjZXMqJftwKoY05nAD5nQDlX1xt_oT-W_p7C8kT6zw</recordid><startdate>20171016</startdate><enddate>20171016</enddate><creator>Vivacqua, Rafael</creator><creator>Vassallo, Raquel</creator><creator>Martins, Felipe</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2342-6835</orcidid><orcidid>https://orcid.org/0000-0003-1032-6162</orcidid></search><sort><creationdate>20171016</creationdate><title>A Low Cost Sensors Approach for Accurate Vehicle Localization and Autonomous Driving Application</title><author>Vivacqua, Rafael ; Vassallo, Raquel ; Martins, Felipe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-8f53929bf28ad9c1cbd0aa6841df6c9d8947426d3ee91b5bafafb224b7c860553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>autonomous driving</topic><topic>computer vision</topic><topic>data fusion</topic><topic>Data integration</topic><topic>Dead reckoning</topic><topic>Driving</topic><topic>ego-localization</topic><topic>inertial navigation system</topic><topic>lane marking detector</topic><topic>Localization</topic><topic>Low cost</topic><topic>map matching</topic><topic>Multisensor fusion</topic><topic>Navigation satellites</topic><topic>Obstacle avoidance</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vivacqua, Rafael</creatorcontrib><creatorcontrib>Vassallo, Raquel</creatorcontrib><creatorcontrib>Martins, Felipe</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vivacqua, Rafael</au><au>Vassallo, Raquel</au><au>Martins, Felipe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Low Cost Sensors Approach for Accurate Vehicle Localization and Autonomous Driving Application</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2017-10-16</date><risdate>2017</risdate><volume>17</volume><issue>10</issue><spage>2359</spage><pages>2359-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Autonomous driving in public roads requires precise localization within the range of few centimeters. Even the best current precise localization system based on the Global Navigation Satellite System (GNSS) can not always reach this level of precision, especially in an urban environment, where the signal is disturbed by surrounding buildings and artifacts. Laser range finder and stereo vision have been successfully used for obstacle detection, mapping and localization to solve the autonomous driving problem. Unfortunately, Light Detection and Ranging (LIDARs) are very expensive sensors and stereo vision requires powerful dedicated hardware to process the cameras information. In this context, this article presents a low-cost architecture of sensors and data fusion algorithm capable of autonomous driving in narrow two-way roads. Our approach exploits a combination of a short-range visual lane marking detector and a dead reckoning system to build a long and precise perception of the lane markings in the vehicle's backwards. This information is used to localize the vehicle in a map, that also contains the reference trajectory for autonomous driving. Experimental results show the successful application of the proposed system on a real autonomous driving situation.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>29035334</pmid><doi>10.3390/s17102359</doi><orcidid>https://orcid.org/0000-0002-2342-6835</orcidid><orcidid>https://orcid.org/0000-0003-1032-6162</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2017-10, Vol.17 (10), p.2359 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b1de8b6465c74a8fa9d8fe199a8e1d38 |
source | Publicly Available Content Database; PubMed Central |
subjects | autonomous driving computer vision data fusion Data integration Dead reckoning Driving ego-localization inertial navigation system lane marking detector Localization Low cost map matching Multisensor fusion Navigation satellites Obstacle avoidance Sensors |
title | A Low Cost Sensors Approach for Accurate Vehicle Localization and Autonomous Driving Application |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A48%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Low%20Cost%20Sensors%20Approach%20for%20Accurate%20Vehicle%20Localization%20and%20Autonomous%20Driving%20Application&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Vivacqua,%20Rafael&rft.date=2017-10-16&rft.volume=17&rft.issue=10&rft.spage=2359&rft.pages=2359-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s17102359&rft_dat=%3Cproquest_doaj_%3E1965672725%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-8f53929bf28ad9c1cbd0aa6841df6c9d8947426d3ee91b5bafafb224b7c860553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1965672725&rft_id=info:pmid/29035334&rfr_iscdi=true |