Loading…

A Low Cost Sensors Approach for Accurate Vehicle Localization and Autonomous Driving Application

Autonomous driving in public roads requires precise localization within the range of few centimeters. Even the best current precise localization system based on the Global Navigation Satellite System (GNSS) can not always reach this level of precision, especially in an urban environment, where the s...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2017-10, Vol.17 (10), p.2359
Main Authors: Vivacqua, Rafael, Vassallo, Raquel, Martins, Felipe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-8f53929bf28ad9c1cbd0aa6841df6c9d8947426d3ee91b5bafafb224b7c860553
cites cdi_FETCH-LOGICAL-c469t-8f53929bf28ad9c1cbd0aa6841df6c9d8947426d3ee91b5bafafb224b7c860553
container_end_page
container_issue 10
container_start_page 2359
container_title Sensors (Basel, Switzerland)
container_volume 17
creator Vivacqua, Rafael
Vassallo, Raquel
Martins, Felipe
description Autonomous driving in public roads requires precise localization within the range of few centimeters. Even the best current precise localization system based on the Global Navigation Satellite System (GNSS) can not always reach this level of precision, especially in an urban environment, where the signal is disturbed by surrounding buildings and artifacts. Laser range finder and stereo vision have been successfully used for obstacle detection, mapping and localization to solve the autonomous driving problem. Unfortunately, Light Detection and Ranging (LIDARs) are very expensive sensors and stereo vision requires powerful dedicated hardware to process the cameras information. In this context, this article presents a low-cost architecture of sensors and data fusion algorithm capable of autonomous driving in narrow two-way roads. Our approach exploits a combination of a short-range visual lane marking detector and a dead reckoning system to build a long and precise perception of the lane markings in the vehicle's backwards. This information is used to localize the vehicle in a map, that also contains the reference trajectory for autonomous driving. Experimental results show the successful application of the proposed system on a real autonomous driving situation.
doi_str_mv 10.3390/s17102359
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b1de8b6465c74a8fa9d8fe199a8e1d38</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b1de8b6465c74a8fa9d8fe199a8e1d38</doaj_id><sourcerecordid>1965672725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-8f53929bf28ad9c1cbd0aa6841df6c9d8947426d3ee91b5bafafb224b7c860553</originalsourceid><addsrcrecordid>eNpdkklvEzEUgC0EoqVw4A8gS1zKITBex74gjcJWKRIHlqt54yVxNBkHe6YIfj1OU6KWk5_8Pn16G0LPSfOaMd28KaQlDWVCP0DnhFO-UJQ2D-_EZ-hJKdumMoypx-iM6oYJxvg5-tHhVfqFl6lM-IsfS8oFd_t9TmA3OKSMO2vnDJPH3_0m2sFX3MIQ_8AU04hhdLibpzSmXZoLfpfjdRzXB8MQ7Q3yFD0KMBT_7Pa9QN8-vP-6_LRYff54texWC8ulnhYqCKap7gNV4LQltncNgFScuCCtdkrzllPpmPea9KKHAKGnlPetVbIRgl2gq6PXJdiafY47yL9NgmhuPlJeG8jToQPTE-dVL7kUtuWgAlR98ERrUJ44pqrr7dG1n_udd9aPU4bhnvR-Zowbs07XRshWSsmq4PJWkNPP2ZfJ7GKxfhhg9HVOhmhBhBStphV9-R-6TXMe66gqJauQtvTQ3asjZXMqJftwKoY05nAD5nQDlX1xt_oT-W_p7C8kT6zw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1965672725</pqid></control><display><type>article</type><title>A Low Cost Sensors Approach for Accurate Vehicle Localization and Autonomous Driving Application</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Vivacqua, Rafael ; Vassallo, Raquel ; Martins, Felipe</creator><creatorcontrib>Vivacqua, Rafael ; Vassallo, Raquel ; Martins, Felipe</creatorcontrib><description>Autonomous driving in public roads requires precise localization within the range of few centimeters. Even the best current precise localization system based on the Global Navigation Satellite System (GNSS) can not always reach this level of precision, especially in an urban environment, where the signal is disturbed by surrounding buildings and artifacts. Laser range finder and stereo vision have been successfully used for obstacle detection, mapping and localization to solve the autonomous driving problem. Unfortunately, Light Detection and Ranging (LIDARs) are very expensive sensors and stereo vision requires powerful dedicated hardware to process the cameras information. In this context, this article presents a low-cost architecture of sensors and data fusion algorithm capable of autonomous driving in narrow two-way roads. Our approach exploits a combination of a short-range visual lane marking detector and a dead reckoning system to build a long and precise perception of the lane markings in the vehicle's backwards. This information is used to localize the vehicle in a map, that also contains the reference trajectory for autonomous driving. Experimental results show the successful application of the proposed system on a real autonomous driving situation.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s17102359</identifier><identifier>PMID: 29035334</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>autonomous driving ; computer vision ; data fusion ; Data integration ; Dead reckoning ; Driving ; ego-localization ; inertial navigation system ; lane marking detector ; Localization ; Low cost ; map matching ; Multisensor fusion ; Navigation satellites ; Obstacle avoidance ; Sensors</subject><ispartof>Sensors (Basel, Switzerland), 2017-10, Vol.17 (10), p.2359</ispartof><rights>Copyright MDPI AG 2017</rights><rights>2017 by the authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-8f53929bf28ad9c1cbd0aa6841df6c9d8947426d3ee91b5bafafb224b7c860553</citedby><cites>FETCH-LOGICAL-c469t-8f53929bf28ad9c1cbd0aa6841df6c9d8947426d3ee91b5bafafb224b7c860553</cites><orcidid>0000-0002-2342-6835 ; 0000-0003-1032-6162</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1965672725/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1965672725?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29035334$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vivacqua, Rafael</creatorcontrib><creatorcontrib>Vassallo, Raquel</creatorcontrib><creatorcontrib>Martins, Felipe</creatorcontrib><title>A Low Cost Sensors Approach for Accurate Vehicle Localization and Autonomous Driving Application</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Autonomous driving in public roads requires precise localization within the range of few centimeters. Even the best current precise localization system based on the Global Navigation Satellite System (GNSS) can not always reach this level of precision, especially in an urban environment, where the signal is disturbed by surrounding buildings and artifacts. Laser range finder and stereo vision have been successfully used for obstacle detection, mapping and localization to solve the autonomous driving problem. Unfortunately, Light Detection and Ranging (LIDARs) are very expensive sensors and stereo vision requires powerful dedicated hardware to process the cameras information. In this context, this article presents a low-cost architecture of sensors and data fusion algorithm capable of autonomous driving in narrow two-way roads. Our approach exploits a combination of a short-range visual lane marking detector and a dead reckoning system to build a long and precise perception of the lane markings in the vehicle's backwards. This information is used to localize the vehicle in a map, that also contains the reference trajectory for autonomous driving. Experimental results show the successful application of the proposed system on a real autonomous driving situation.</description><subject>autonomous driving</subject><subject>computer vision</subject><subject>data fusion</subject><subject>Data integration</subject><subject>Dead reckoning</subject><subject>Driving</subject><subject>ego-localization</subject><subject>inertial navigation system</subject><subject>lane marking detector</subject><subject>Localization</subject><subject>Low cost</subject><subject>map matching</subject><subject>Multisensor fusion</subject><subject>Navigation satellites</subject><subject>Obstacle avoidance</subject><subject>Sensors</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkklvEzEUgC0EoqVw4A8gS1zKITBex74gjcJWKRIHlqt54yVxNBkHe6YIfj1OU6KWk5_8Pn16G0LPSfOaMd28KaQlDWVCP0DnhFO-UJQ2D-_EZ-hJKdumMoypx-iM6oYJxvg5-tHhVfqFl6lM-IsfS8oFd_t9TmA3OKSMO2vnDJPH3_0m2sFX3MIQ_8AU04hhdLibpzSmXZoLfpfjdRzXB8MQ7Q3yFD0KMBT_7Pa9QN8-vP-6_LRYff54texWC8ulnhYqCKap7gNV4LQltncNgFScuCCtdkrzllPpmPea9KKHAKGnlPetVbIRgl2gq6PXJdiafY47yL9NgmhuPlJeG8jToQPTE-dVL7kUtuWgAlR98ERrUJ44pqrr7dG1n_udd9aPU4bhnvR-Zowbs07XRshWSsmq4PJWkNPP2ZfJ7GKxfhhg9HVOhmhBhBStphV9-R-6TXMe66gqJauQtvTQ3asjZXMqJftwKoY05nAD5nQDlX1xt_oT-W_p7C8kT6zw</recordid><startdate>20171016</startdate><enddate>20171016</enddate><creator>Vivacqua, Rafael</creator><creator>Vassallo, Raquel</creator><creator>Martins, Felipe</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2342-6835</orcidid><orcidid>https://orcid.org/0000-0003-1032-6162</orcidid></search><sort><creationdate>20171016</creationdate><title>A Low Cost Sensors Approach for Accurate Vehicle Localization and Autonomous Driving Application</title><author>Vivacqua, Rafael ; Vassallo, Raquel ; Martins, Felipe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-8f53929bf28ad9c1cbd0aa6841df6c9d8947426d3ee91b5bafafb224b7c860553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>autonomous driving</topic><topic>computer vision</topic><topic>data fusion</topic><topic>Data integration</topic><topic>Dead reckoning</topic><topic>Driving</topic><topic>ego-localization</topic><topic>inertial navigation system</topic><topic>lane marking detector</topic><topic>Localization</topic><topic>Low cost</topic><topic>map matching</topic><topic>Multisensor fusion</topic><topic>Navigation satellites</topic><topic>Obstacle avoidance</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vivacqua, Rafael</creatorcontrib><creatorcontrib>Vassallo, Raquel</creatorcontrib><creatorcontrib>Martins, Felipe</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vivacqua, Rafael</au><au>Vassallo, Raquel</au><au>Martins, Felipe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Low Cost Sensors Approach for Accurate Vehicle Localization and Autonomous Driving Application</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2017-10-16</date><risdate>2017</risdate><volume>17</volume><issue>10</issue><spage>2359</spage><pages>2359-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Autonomous driving in public roads requires precise localization within the range of few centimeters. Even the best current precise localization system based on the Global Navigation Satellite System (GNSS) can not always reach this level of precision, especially in an urban environment, where the signal is disturbed by surrounding buildings and artifacts. Laser range finder and stereo vision have been successfully used for obstacle detection, mapping and localization to solve the autonomous driving problem. Unfortunately, Light Detection and Ranging (LIDARs) are very expensive sensors and stereo vision requires powerful dedicated hardware to process the cameras information. In this context, this article presents a low-cost architecture of sensors and data fusion algorithm capable of autonomous driving in narrow two-way roads. Our approach exploits a combination of a short-range visual lane marking detector and a dead reckoning system to build a long and precise perception of the lane markings in the vehicle's backwards. This information is used to localize the vehicle in a map, that also contains the reference trajectory for autonomous driving. Experimental results show the successful application of the proposed system on a real autonomous driving situation.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>29035334</pmid><doi>10.3390/s17102359</doi><orcidid>https://orcid.org/0000-0002-2342-6835</orcidid><orcidid>https://orcid.org/0000-0003-1032-6162</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2017-10, Vol.17 (10), p.2359
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b1de8b6465c74a8fa9d8fe199a8e1d38
source Publicly Available Content Database; PubMed Central
subjects autonomous driving
computer vision
data fusion
Data integration
Dead reckoning
Driving
ego-localization
inertial navigation system
lane marking detector
Localization
Low cost
map matching
Multisensor fusion
Navigation satellites
Obstacle avoidance
Sensors
title A Low Cost Sensors Approach for Accurate Vehicle Localization and Autonomous Driving Application
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A48%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Low%20Cost%20Sensors%20Approach%20for%20Accurate%20Vehicle%20Localization%20and%20Autonomous%20Driving%20Application&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Vivacqua,%20Rafael&rft.date=2017-10-16&rft.volume=17&rft.issue=10&rft.spage=2359&rft.pages=2359-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s17102359&rft_dat=%3Cproquest_doaj_%3E1965672725%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-8f53929bf28ad9c1cbd0aa6841df6c9d8947426d3ee91b5bafafb224b7c860553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1965672725&rft_id=info:pmid/29035334&rfr_iscdi=true