Loading…

The Concept of Interactive Dynamic Intelligent Virtual Sensors (IDIVS): Bridging the Gap between Sensors, Services, and Users through Machine Learning

This paper concerns the novel concept of an Interactive Dynamic Intelligent Virtual Sensor (IDIVS), which extends virtual/soft sensors towards making use of user input through interactive learning (IML) and transfer learning. In research, many studies can be found on using machine learning in this d...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2023-05, Vol.13 (11), p.6516
Main Authors: Persson, Jan A., Bugeja, Joseph, Davidsson, Paul, Holmberg, Johan, Kebande, Victor R., Mihailescu, Radu-Casian, Sarkheyli-Hägele, Arezoo, Tegen, Agnes
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c398t-37bcfc7c7648db1a46990f5e04f6cd0fd70cbe86e84e88de7e4b09f9b2dceb9a3
container_end_page
container_issue 11
container_start_page 6516
container_title Applied sciences
container_volume 13
creator Persson, Jan A.
Bugeja, Joseph
Davidsson, Paul
Holmberg, Johan
Kebande, Victor R.
Mihailescu, Radu-Casian
Sarkheyli-Hägele, Arezoo
Tegen, Agnes
description This paper concerns the novel concept of an Interactive Dynamic Intelligent Virtual Sensor (IDIVS), which extends virtual/soft sensors towards making use of user input through interactive learning (IML) and transfer learning. In research, many studies can be found on using machine learning in this domain, but not much on using IML. This paper contributes by highlighting how this can be done and the associated positive potential effects and challenges. An IDIVS provides a sensor-like output and achieves the output through the data fusion of sensor values or from the output values of other IDIVSs. We focus on settings where people are present in different roles: from basic service users in the environment being sensed to interactive service users supporting the learning of the IDIVS, as well as configurators of the IDIVS and explicit IDIVS teachers. The IDIVS aims at managing situations where sensors may disappear and reappear and be of heterogeneous types. We refer to and recap the major findings from related experiments and validation in complementing work. Further, we point at several application areas: smart building, smart mobility, smart learning, and smart health. The information properties and capabilities needed in the IDIVS, with extensions towards information security, are introduced and discussed.
doi_str_mv 10.3390/app13116516
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b1eadea1d6e24ebaa95bf1c1f0b84523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752723720</galeid><doaj_id>oai_doaj_org_article_b1eadea1d6e24ebaa95bf1c1f0b84523</doaj_id><sourcerecordid>A752723720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-37bcfc7c7648db1a46990f5e04f6cd0fd70cbe86e84e88de7e4b09f9b2dceb9a3</originalsourceid><addsrcrecordid>eNpVks9u1DAQxiMEElXpiRewxAVEt9hx_nLb7tI20iIObfcaje1x1qusHRynVV-E58XdACqegz-NvvlpRjNJ8p7RC85r-gWGgXHGipwVr5KTlJbFgmesfP1Cv03OxnFP46sZrxg9SX7d7ZCsnJU4BOI0aWxADzKYByTrJwsHI4-5vjcd2kC2xocJenKLdnR-JB-bdbO9_fSVXHqjOmM7EiLwGgYiMDwi2r_O8yj8g5EYFVhF7keM5WHn3dTtyHeQO2ORbBC8jZR3yRsN_Yhnf_7T5P7q293qZrH5cd2slpuF5HUVFrwUUstSlkVWKcEgK-qa6hxppgupqFYllQKrAqsMq0phiZmgta5FqiSKGvhp0sxc5WDfDt4cwD-1Dkx7TDjfteCDkT22giEoBKYKTDMUAHUuNJNMU1Flecoj63xmjY84TOI_2tpsl0faAaa2oCzLov3DbB-8-znhGNq9m7yN07Zplcbx0qJ6dl3Mrg5iD8ZqF-J6YiiMq3EWtYn5ZZmnZcrLlMaCz3OB9G4cPep_fTDaPt9J--JO-G_XybIU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823982684</pqid></control><display><type>article</type><title>The Concept of Interactive Dynamic Intelligent Virtual Sensors (IDIVS): Bridging the Gap between Sensors, Services, and Users through Machine Learning</title><source>Publicly Available Content Database</source><creator>Persson, Jan A. ; Bugeja, Joseph ; Davidsson, Paul ; Holmberg, Johan ; Kebande, Victor R. ; Mihailescu, Radu-Casian ; Sarkheyli-Hägele, Arezoo ; Tegen, Agnes</creator><creatorcontrib>Persson, Jan A. ; Bugeja, Joseph ; Davidsson, Paul ; Holmberg, Johan ; Kebande, Victor R. ; Mihailescu, Radu-Casian ; Sarkheyli-Hägele, Arezoo ; Tegen, Agnes</creatorcontrib><description>This paper concerns the novel concept of an Interactive Dynamic Intelligent Virtual Sensor (IDIVS), which extends virtual/soft sensors towards making use of user input through interactive learning (IML) and transfer learning. In research, many studies can be found on using machine learning in this domain, but not much on using IML. This paper contributes by highlighting how this can be done and the associated positive potential effects and challenges. An IDIVS provides a sensor-like output and achieves the output through the data fusion of sensor values or from the output values of other IDIVSs. We focus on settings where people are present in different roles: from basic service users in the environment being sensed to interactive service users supporting the learning of the IDIVS, as well as configurators of the IDIVS and explicit IDIVS teachers. The IDIVS aims at managing situations where sensors may disappear and reappear and be of heterogeneous types. We refer to and recap the major findings from related experiments and validation in complementing work. Further, we point at several application areas: smart building, smart mobility, smart learning, and smart health. The information properties and capabilities needed in the IDIVS, with extensions towards information security, are introduced and discussed.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app13116516</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Access control ; Data integration ; Distance learning ; Feedback ; Interactive learning ; interactive machine learning ; Internet of Things ; Learning algorithms ; Machine learning ; Multimedia industry ; Multisensor fusion ; online learning ; sensor data fusion ; Sensors ; Smartphones ; soft sensors ; Software ; Transfer learning ; Virtual reality ; Virtual sensors</subject><ispartof>Applied sciences, 2023-05, Vol.13 (11), p.6516</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c398t-37bcfc7c7648db1a46990f5e04f6cd0fd70cbe86e84e88de7e4b09f9b2dceb9a3</cites><orcidid>0000-0002-9471-8405 ; 0000-0003-0998-6585 ; 0000-0002-7701-0851 ; 0000-0003-0546-072X ; 0000-0003-4071-4596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2823982684/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2823982684?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-60144$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Persson, Jan A.</creatorcontrib><creatorcontrib>Bugeja, Joseph</creatorcontrib><creatorcontrib>Davidsson, Paul</creatorcontrib><creatorcontrib>Holmberg, Johan</creatorcontrib><creatorcontrib>Kebande, Victor R.</creatorcontrib><creatorcontrib>Mihailescu, Radu-Casian</creatorcontrib><creatorcontrib>Sarkheyli-Hägele, Arezoo</creatorcontrib><creatorcontrib>Tegen, Agnes</creatorcontrib><title>The Concept of Interactive Dynamic Intelligent Virtual Sensors (IDIVS): Bridging the Gap between Sensors, Services, and Users through Machine Learning</title><title>Applied sciences</title><description>This paper concerns the novel concept of an Interactive Dynamic Intelligent Virtual Sensor (IDIVS), which extends virtual/soft sensors towards making use of user input through interactive learning (IML) and transfer learning. In research, many studies can be found on using machine learning in this domain, but not much on using IML. This paper contributes by highlighting how this can be done and the associated positive potential effects and challenges. An IDIVS provides a sensor-like output and achieves the output through the data fusion of sensor values or from the output values of other IDIVSs. We focus on settings where people are present in different roles: from basic service users in the environment being sensed to interactive service users supporting the learning of the IDIVS, as well as configurators of the IDIVS and explicit IDIVS teachers. The IDIVS aims at managing situations where sensors may disappear and reappear and be of heterogeneous types. We refer to and recap the major findings from related experiments and validation in complementing work. Further, we point at several application areas: smart building, smart mobility, smart learning, and smart health. The information properties and capabilities needed in the IDIVS, with extensions towards information security, are introduced and discussed.</description><subject>Access control</subject><subject>Data integration</subject><subject>Distance learning</subject><subject>Feedback</subject><subject>Interactive learning</subject><subject>interactive machine learning</subject><subject>Internet of Things</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Multimedia industry</subject><subject>Multisensor fusion</subject><subject>online learning</subject><subject>sensor data fusion</subject><subject>Sensors</subject><subject>Smartphones</subject><subject>soft sensors</subject><subject>Software</subject><subject>Transfer learning</subject><subject>Virtual reality</subject><subject>Virtual sensors</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVks9u1DAQxiMEElXpiRewxAVEt9hx_nLb7tI20iIObfcaje1x1qusHRynVV-E58XdACqegz-NvvlpRjNJ8p7RC85r-gWGgXHGipwVr5KTlJbFgmesfP1Cv03OxnFP46sZrxg9SX7d7ZCsnJU4BOI0aWxADzKYByTrJwsHI4-5vjcd2kC2xocJenKLdnR-JB-bdbO9_fSVXHqjOmM7EiLwGgYiMDwi2r_O8yj8g5EYFVhF7keM5WHn3dTtyHeQO2ORbBC8jZR3yRsN_Yhnf_7T5P7q293qZrH5cd2slpuF5HUVFrwUUstSlkVWKcEgK-qa6hxppgupqFYllQKrAqsMq0phiZmgta5FqiSKGvhp0sxc5WDfDt4cwD-1Dkx7TDjfteCDkT22giEoBKYKTDMUAHUuNJNMU1Flecoj63xmjY84TOI_2tpsl0faAaa2oCzLov3DbB-8-znhGNq9m7yN07Zplcbx0qJ6dl3Mrg5iD8ZqF-J6YiiMq3EWtYn5ZZmnZcrLlMaCz3OB9G4cPep_fTDaPt9J--JO-G_XybIU</recordid><startdate>20230526</startdate><enddate>20230526</enddate><creator>Persson, Jan A.</creator><creator>Bugeja, Joseph</creator><creator>Davidsson, Paul</creator><creator>Holmberg, Johan</creator><creator>Kebande, Victor R.</creator><creator>Mihailescu, Radu-Casian</creator><creator>Sarkheyli-Hägele, Arezoo</creator><creator>Tegen, Agnes</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9471-8405</orcidid><orcidid>https://orcid.org/0000-0003-0998-6585</orcidid><orcidid>https://orcid.org/0000-0002-7701-0851</orcidid><orcidid>https://orcid.org/0000-0003-0546-072X</orcidid><orcidid>https://orcid.org/0000-0003-4071-4596</orcidid></search><sort><creationdate>20230526</creationdate><title>The Concept of Interactive Dynamic Intelligent Virtual Sensors (IDIVS): Bridging the Gap between Sensors, Services, and Users through Machine Learning</title><author>Persson, Jan A. ; Bugeja, Joseph ; Davidsson, Paul ; Holmberg, Johan ; Kebande, Victor R. ; Mihailescu, Radu-Casian ; Sarkheyli-Hägele, Arezoo ; Tegen, Agnes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-37bcfc7c7648db1a46990f5e04f6cd0fd70cbe86e84e88de7e4b09f9b2dceb9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Access control</topic><topic>Data integration</topic><topic>Distance learning</topic><topic>Feedback</topic><topic>Interactive learning</topic><topic>interactive machine learning</topic><topic>Internet of Things</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Multimedia industry</topic><topic>Multisensor fusion</topic><topic>online learning</topic><topic>sensor data fusion</topic><topic>Sensors</topic><topic>Smartphones</topic><topic>soft sensors</topic><topic>Software</topic><topic>Transfer learning</topic><topic>Virtual reality</topic><topic>Virtual sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Persson, Jan A.</creatorcontrib><creatorcontrib>Bugeja, Joseph</creatorcontrib><creatorcontrib>Davidsson, Paul</creatorcontrib><creatorcontrib>Holmberg, Johan</creatorcontrib><creatorcontrib>Kebande, Victor R.</creatorcontrib><creatorcontrib>Mihailescu, Radu-Casian</creatorcontrib><creatorcontrib>Sarkheyli-Hägele, Arezoo</creatorcontrib><creatorcontrib>Tegen, Agnes</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Persson, Jan A.</au><au>Bugeja, Joseph</au><au>Davidsson, Paul</au><au>Holmberg, Johan</au><au>Kebande, Victor R.</au><au>Mihailescu, Radu-Casian</au><au>Sarkheyli-Hägele, Arezoo</au><au>Tegen, Agnes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Concept of Interactive Dynamic Intelligent Virtual Sensors (IDIVS): Bridging the Gap between Sensors, Services, and Users through Machine Learning</atitle><jtitle>Applied sciences</jtitle><date>2023-05-26</date><risdate>2023</risdate><volume>13</volume><issue>11</issue><spage>6516</spage><pages>6516-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>This paper concerns the novel concept of an Interactive Dynamic Intelligent Virtual Sensor (IDIVS), which extends virtual/soft sensors towards making use of user input through interactive learning (IML) and transfer learning. In research, many studies can be found on using machine learning in this domain, but not much on using IML. This paper contributes by highlighting how this can be done and the associated positive potential effects and challenges. An IDIVS provides a sensor-like output and achieves the output through the data fusion of sensor values or from the output values of other IDIVSs. We focus on settings where people are present in different roles: from basic service users in the environment being sensed to interactive service users supporting the learning of the IDIVS, as well as configurators of the IDIVS and explicit IDIVS teachers. The IDIVS aims at managing situations where sensors may disappear and reappear and be of heterogeneous types. We refer to and recap the major findings from related experiments and validation in complementing work. Further, we point at several application areas: smart building, smart mobility, smart learning, and smart health. The information properties and capabilities needed in the IDIVS, with extensions towards information security, are introduced and discussed.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app13116516</doi><orcidid>https://orcid.org/0000-0002-9471-8405</orcidid><orcidid>https://orcid.org/0000-0003-0998-6585</orcidid><orcidid>https://orcid.org/0000-0002-7701-0851</orcidid><orcidid>https://orcid.org/0000-0003-0546-072X</orcidid><orcidid>https://orcid.org/0000-0003-4071-4596</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2023-05, Vol.13 (11), p.6516
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b1eadea1d6e24ebaa95bf1c1f0b84523
source Publicly Available Content Database
subjects Access control
Data integration
Distance learning
Feedback
Interactive learning
interactive machine learning
Internet of Things
Learning algorithms
Machine learning
Multimedia industry
Multisensor fusion
online learning
sensor data fusion
Sensors
Smartphones
soft sensors
Software
Transfer learning
Virtual reality
Virtual sensors
title The Concept of Interactive Dynamic Intelligent Virtual Sensors (IDIVS): Bridging the Gap between Sensors, Services, and Users through Machine Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A42%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Concept%20of%20Interactive%20Dynamic%20Intelligent%20Virtual%20Sensors%20(IDIVS):%20Bridging%20the%20Gap%20between%20Sensors,%20Services,%20and%20Users%20through%20Machine%20Learning&rft.jtitle=Applied%20sciences&rft.au=Persson,%20Jan%20A.&rft.date=2023-05-26&rft.volume=13&rft.issue=11&rft.spage=6516&rft.pages=6516-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app13116516&rft_dat=%3Cgale_doaj_%3EA752723720%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-37bcfc7c7648db1a46990f5e04f6cd0fd70cbe86e84e88de7e4b09f9b2dceb9a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2823982684&rft_id=info:pmid/&rft_galeid=A752723720&rfr_iscdi=true