Loading…

Feasibility Study of Controlled-Source Electromagnetic Method for Monitoring Low-Enthalpy Geothermal Reservoirs

Tracking temperature changes by measuring the resulting resistivity changes inside low-enthalpy reservoirs is crucial to avoid early thermal breakthroughs and maintain sustainable energy production. The controlled-source electromagnetic method (CSEM) allows for the estimation of sub-surface resistiv...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2023-08, Vol.13 (16), p.9399
Main Authors: Eltayieb, Mahmoud, Werthmüller, Dieter, Drijkoningen, Guy, Slob, Evert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c361t-2f7792eb3cc068bb74fb9072a016aac19d6beb049e4f118a46177ed24a12e9673
container_end_page
container_issue 16
container_start_page 9399
container_title Applied sciences
container_volume 13
creator Eltayieb, Mahmoud
Werthmüller, Dieter
Drijkoningen, Guy
Slob, Evert
description Tracking temperature changes by measuring the resulting resistivity changes inside low-enthalpy reservoirs is crucial to avoid early thermal breakthroughs and maintain sustainable energy production. The controlled-source electromagnetic method (CSEM) allows for the estimation of sub-surface resistivity. However, it has not yet been proven that the CSEM can monitor the subtle resistivity changes typical of low-enthalpy reservoirs. In this paper, we present a feasibility study considering the CSEM monitoring of 4–8 Ω·m resistivity changes in a deep low-enthalpy reservoir model, as part of the Delft University of Technology (TU Delft) campus geothermal project. We consider the use of a surface-to-borehole CSEM for the detection of resistivity changes in a simplified model of the TU Delft campus reservoir. We investigate the sensitivity of CSEM data to disk-shaped resistivity changes with a radius of 300, 600, 900, or 1200 m at return temperatures equal to 25, 30, …, 50 °C. We test the robustness of CSEM monitoring against various undesired effects, such as random noise, survey repeatability errors, and steel-cased wells. The modelled differences in the electric field suggest that they are sufficient for the successful CSEM detection of resistivity changes in the low-enthalpy reservoir. The difference in monitoring data increases when increasing the resistivity change radius from 300 to 1200 m or from 4 to 8 Ω·m. Furthermore, all considered changes lead to differences that would be detectable in CSEM data impacted by undesired effects. The obtained results indicate that the CSEM could be a promising geophysical tool for the monitoring of small resistivity changes in low-enthalpy reservoirs, which would be beneficial for geothermal energy production.
doi_str_mv 10.3390/app13169399
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b1fd26aa3f204980ab7796aa89959e6b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762477299</galeid><doaj_id>oai_doaj_org_article_b1fd26aa3f204980ab7796aa89959e6b</doaj_id><sourcerecordid>A762477299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-2f7792eb3cc068bb74fb9072a016aac19d6beb049e4f118a46177ed24a12e9673</originalsourceid><addsrcrecordid>eNpNkU1rGzEQhpfSQkOSU_-AoMeyqT420uoYjJMGHApNexYj7ciWWe9stXKL_33UupRIB41eZp75apoPgt8oZflnmGehhLbK2jfNheRGt6oT5u0r-31zvSx7Xo8Vqhf8oqF7hCX5NKZyYs_lOJwYRbaiqWQaRxzaZzrmgGw9YqjSAbYTlhTYE5YdDSxSZk80pUI5TVu2od_teio7GOcTe0AqO8wHGNk3XDD_opSXq-ZdhHHB63_vZfPjfv199aXdfH14XN1t2qC0KK2MxliJXoXAde-96aK33EjgQgMEYQft0fPOYheF6KHTwhgcZAdCotVGXTaPZ-5AsHdzTgfIJ0eQ3F-B8tZBro2M6LyIg6xUFWUF9hx8zV3_vbW3FrWvrI9n1pzp5xGX4vZ1KFMt38n-VhtrtJLV6-bstYUKTVOkkiHUO-AhBZowpqrfGS07Y6S1NeDTOSBkWpaM8X-Zgrs_G3WvNqpeABPqlDk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2856797632</pqid></control><display><type>article</type><title>Feasibility Study of Controlled-Source Electromagnetic Method for Monitoring Low-Enthalpy Geothermal Reservoirs</title><source>Publicly Available Content Database</source><creator>Eltayieb, Mahmoud ; Werthmüller, Dieter ; Drijkoningen, Guy ; Slob, Evert</creator><creatorcontrib>Eltayieb, Mahmoud ; Werthmüller, Dieter ; Drijkoningen, Guy ; Slob, Evert</creatorcontrib><description>Tracking temperature changes by measuring the resulting resistivity changes inside low-enthalpy reservoirs is crucial to avoid early thermal breakthroughs and maintain sustainable energy production. The controlled-source electromagnetic method (CSEM) allows for the estimation of sub-surface resistivity. However, it has not yet been proven that the CSEM can monitor the subtle resistivity changes typical of low-enthalpy reservoirs. In this paper, we present a feasibility study considering the CSEM monitoring of 4–8 Ω·m resistivity changes in a deep low-enthalpy reservoir model, as part of the Delft University of Technology (TU Delft) campus geothermal project. We consider the use of a surface-to-borehole CSEM for the detection of resistivity changes in a simplified model of the TU Delft campus reservoir. We investigate the sensitivity of CSEM data to disk-shaped resistivity changes with a radius of 300, 600, 900, or 1200 m at return temperatures equal to 25, 30, …, 50 °C. We test the robustness of CSEM monitoring against various undesired effects, such as random noise, survey repeatability errors, and steel-cased wells. The modelled differences in the electric field suggest that they are sufficient for the successful CSEM detection of resistivity changes in the low-enthalpy reservoir. The difference in monitoring data increases when increasing the resistivity change radius from 300 to 1200 m or from 4 to 8 Ω·m. Furthermore, all considered changes lead to differences that would be detectable in CSEM data impacted by undesired effects. The obtained results indicate that the CSEM could be a promising geophysical tool for the monitoring of small resistivity changes in low-enthalpy reservoirs, which would be beneficial for geothermal energy production.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app13169399</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analysis ; Cold ; CSEM monitoring ; Electric fields ; Electric properties ; Electromagnetism ; Energy ; Feasibility studies ; feasibility study ; geothermal energy ; Geothermal power ; Geothermal resources ; Investigations ; low-enthalpy reservoirs ; Methods ; Netherlands ; Permeability ; Reservoirs ; Steel pipes ; sustainable utilization ; Temperature ; TU Delft campus geothermal project</subject><ispartof>Applied sciences, 2023-08, Vol.13 (16), p.9399</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c361t-2f7792eb3cc068bb74fb9072a016aac19d6beb049e4f118a46177ed24a12e9673</cites><orcidid>0000-0002-4529-1134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2856797632/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2856797632?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Eltayieb, Mahmoud</creatorcontrib><creatorcontrib>Werthmüller, Dieter</creatorcontrib><creatorcontrib>Drijkoningen, Guy</creatorcontrib><creatorcontrib>Slob, Evert</creatorcontrib><title>Feasibility Study of Controlled-Source Electromagnetic Method for Monitoring Low-Enthalpy Geothermal Reservoirs</title><title>Applied sciences</title><description>Tracking temperature changes by measuring the resulting resistivity changes inside low-enthalpy reservoirs is crucial to avoid early thermal breakthroughs and maintain sustainable energy production. The controlled-source electromagnetic method (CSEM) allows for the estimation of sub-surface resistivity. However, it has not yet been proven that the CSEM can monitor the subtle resistivity changes typical of low-enthalpy reservoirs. In this paper, we present a feasibility study considering the CSEM monitoring of 4–8 Ω·m resistivity changes in a deep low-enthalpy reservoir model, as part of the Delft University of Technology (TU Delft) campus geothermal project. We consider the use of a surface-to-borehole CSEM for the detection of resistivity changes in a simplified model of the TU Delft campus reservoir. We investigate the sensitivity of CSEM data to disk-shaped resistivity changes with a radius of 300, 600, 900, or 1200 m at return temperatures equal to 25, 30, …, 50 °C. We test the robustness of CSEM monitoring against various undesired effects, such as random noise, survey repeatability errors, and steel-cased wells. The modelled differences in the electric field suggest that they are sufficient for the successful CSEM detection of resistivity changes in the low-enthalpy reservoir. The difference in monitoring data increases when increasing the resistivity change radius from 300 to 1200 m or from 4 to 8 Ω·m. Furthermore, all considered changes lead to differences that would be detectable in CSEM data impacted by undesired effects. The obtained results indicate that the CSEM could be a promising geophysical tool for the monitoring of small resistivity changes in low-enthalpy reservoirs, which would be beneficial for geothermal energy production.</description><subject>Analysis</subject><subject>Cold</subject><subject>CSEM monitoring</subject><subject>Electric fields</subject><subject>Electric properties</subject><subject>Electromagnetism</subject><subject>Energy</subject><subject>Feasibility studies</subject><subject>feasibility study</subject><subject>geothermal energy</subject><subject>Geothermal power</subject><subject>Geothermal resources</subject><subject>Investigations</subject><subject>low-enthalpy reservoirs</subject><subject>Methods</subject><subject>Netherlands</subject><subject>Permeability</subject><subject>Reservoirs</subject><subject>Steel pipes</subject><subject>sustainable utilization</subject><subject>Temperature</subject><subject>TU Delft campus geothermal project</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1rGzEQhpfSQkOSU_-AoMeyqT420uoYjJMGHApNexYj7ciWWe9stXKL_33UupRIB41eZp75apoPgt8oZflnmGehhLbK2jfNheRGt6oT5u0r-31zvSx7Xo8Vqhf8oqF7hCX5NKZyYs_lOJwYRbaiqWQaRxzaZzrmgGw9YqjSAbYTlhTYE5YdDSxSZk80pUI5TVu2od_teio7GOcTe0AqO8wHGNk3XDD_opSXq-ZdhHHB63_vZfPjfv199aXdfH14XN1t2qC0KK2MxliJXoXAde-96aK33EjgQgMEYQft0fPOYheF6KHTwhgcZAdCotVGXTaPZ-5AsHdzTgfIJ0eQ3F-B8tZBro2M6LyIg6xUFWUF9hx8zV3_vbW3FrWvrI9n1pzp5xGX4vZ1KFMt38n-VhtrtJLV6-bstYUKTVOkkiHUO-AhBZowpqrfGS07Y6S1NeDTOSBkWpaM8X-Zgrs_G3WvNqpeABPqlDk</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Eltayieb, Mahmoud</creator><creator>Werthmüller, Dieter</creator><creator>Drijkoningen, Guy</creator><creator>Slob, Evert</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4529-1134</orcidid></search><sort><creationdate>20230801</creationdate><title>Feasibility Study of Controlled-Source Electromagnetic Method for Monitoring Low-Enthalpy Geothermal Reservoirs</title><author>Eltayieb, Mahmoud ; Werthmüller, Dieter ; Drijkoningen, Guy ; Slob, Evert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-2f7792eb3cc068bb74fb9072a016aac19d6beb049e4f118a46177ed24a12e9673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Cold</topic><topic>CSEM monitoring</topic><topic>Electric fields</topic><topic>Electric properties</topic><topic>Electromagnetism</topic><topic>Energy</topic><topic>Feasibility studies</topic><topic>feasibility study</topic><topic>geothermal energy</topic><topic>Geothermal power</topic><topic>Geothermal resources</topic><topic>Investigations</topic><topic>low-enthalpy reservoirs</topic><topic>Methods</topic><topic>Netherlands</topic><topic>Permeability</topic><topic>Reservoirs</topic><topic>Steel pipes</topic><topic>sustainable utilization</topic><topic>Temperature</topic><topic>TU Delft campus geothermal project</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eltayieb, Mahmoud</creatorcontrib><creatorcontrib>Werthmüller, Dieter</creatorcontrib><creatorcontrib>Drijkoningen, Guy</creatorcontrib><creatorcontrib>Slob, Evert</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eltayieb, Mahmoud</au><au>Werthmüller, Dieter</au><au>Drijkoningen, Guy</au><au>Slob, Evert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feasibility Study of Controlled-Source Electromagnetic Method for Monitoring Low-Enthalpy Geothermal Reservoirs</atitle><jtitle>Applied sciences</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>13</volume><issue>16</issue><spage>9399</spage><pages>9399-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Tracking temperature changes by measuring the resulting resistivity changes inside low-enthalpy reservoirs is crucial to avoid early thermal breakthroughs and maintain sustainable energy production. The controlled-source electromagnetic method (CSEM) allows for the estimation of sub-surface resistivity. However, it has not yet been proven that the CSEM can monitor the subtle resistivity changes typical of low-enthalpy reservoirs. In this paper, we present a feasibility study considering the CSEM monitoring of 4–8 Ω·m resistivity changes in a deep low-enthalpy reservoir model, as part of the Delft University of Technology (TU Delft) campus geothermal project. We consider the use of a surface-to-borehole CSEM for the detection of resistivity changes in a simplified model of the TU Delft campus reservoir. We investigate the sensitivity of CSEM data to disk-shaped resistivity changes with a radius of 300, 600, 900, or 1200 m at return temperatures equal to 25, 30, …, 50 °C. We test the robustness of CSEM monitoring against various undesired effects, such as random noise, survey repeatability errors, and steel-cased wells. The modelled differences in the electric field suggest that they are sufficient for the successful CSEM detection of resistivity changes in the low-enthalpy reservoir. The difference in monitoring data increases when increasing the resistivity change radius from 300 to 1200 m or from 4 to 8 Ω·m. Furthermore, all considered changes lead to differences that would be detectable in CSEM data impacted by undesired effects. The obtained results indicate that the CSEM could be a promising geophysical tool for the monitoring of small resistivity changes in low-enthalpy reservoirs, which would be beneficial for geothermal energy production.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app13169399</doi><orcidid>https://orcid.org/0000-0002-4529-1134</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2023-08, Vol.13 (16), p.9399
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b1fd26aa3f204980ab7796aa89959e6b
source Publicly Available Content Database
subjects Analysis
Cold
CSEM monitoring
Electric fields
Electric properties
Electromagnetism
Energy
Feasibility studies
feasibility study
geothermal energy
Geothermal power
Geothermal resources
Investigations
low-enthalpy reservoirs
Methods
Netherlands
Permeability
Reservoirs
Steel pipes
sustainable utilization
Temperature
TU Delft campus geothermal project
title Feasibility Study of Controlled-Source Electromagnetic Method for Monitoring Low-Enthalpy Geothermal Reservoirs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T12%3A00%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feasibility%20Study%20of%20Controlled-Source%20Electromagnetic%20Method%20for%20Monitoring%20Low-Enthalpy%20Geothermal%20Reservoirs&rft.jtitle=Applied%20sciences&rft.au=Eltayieb,%20Mahmoud&rft.date=2023-08-01&rft.volume=13&rft.issue=16&rft.spage=9399&rft.pages=9399-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app13169399&rft_dat=%3Cgale_doaj_%3EA762477299%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-2f7792eb3cc068bb74fb9072a016aac19d6beb049e4f118a46177ed24a12e9673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2856797632&rft_id=info:pmid/&rft_galeid=A762477299&rfr_iscdi=true