Loading…
Twist angle-dependent conductivities across MoS2/graphene heterojunctions
Van der Waals heterostructures stacked from different two-dimensional materials offer a unique platform for addressing many fundamental physics and construction of advanced devices. Twist angle between the two individual layers plays a crucial role in tuning the heterostructure properties. Here we r...
Saved in:
Published in: | Nature communications 2018-10, Vol.9 (1), p.1-6, Article 4068 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c517t-55dfc552d649c5b9d03027f05e4c0585e0e600ce83b2c9da2909909d55e776f63 |
---|---|
cites | cdi_FETCH-LOGICAL-c517t-55dfc552d649c5b9d03027f05e4c0585e0e600ce83b2c9da2909909d55e776f63 |
container_end_page | 6 |
container_issue | 1 |
container_start_page | 1 |
container_title | Nature communications |
container_volume | 9 |
creator | Liao, Mengzhou Wu, Ze-Wen Du, Luojun Zhang, Tingting Wei, Zheng Zhu, Jianqi Yu, Hua Tang, Jian Gu, Lin Xing, Yanxia Yang, Rong Shi, Dongxia Yao, Yugui Zhang, Guangyu |
description | Van der Waals heterostructures stacked from different two-dimensional materials offer a unique platform for addressing many fundamental physics and construction of advanced devices. Twist angle between the two individual layers plays a crucial role in tuning the heterostructure properties. Here we report the experimental investigation of the twist angle-dependent conductivities in MoS
2
/graphene van der Waals heterojunctions. We found that the vertical conductivity of the heterojunction can be tuned by ∼5 times under different twist configurations, and the highest/lowest conductivity occurs at a twist angle of 0°/30°. Density functional theory simulations suggest that this conductivity change originates from the transmission coefficient difference in the heterojunctions with different twist angles. Our work provides a guidance in using the MoS
2
/graphene heterojunction for electronics, especially on reducing the contact resistance in MoS
2
devices as well as other TMDCs devices contacted by graphene.
Twisting vertically stacked individual layers of two-dimensional materials can trigger exciting fundamental physics and advanced electronic device applications. Here, the authors report five times enhancement in vertical heterojunction conductivity on rotating MoS
2
over graphene. |
doi_str_mv | 10.1038/s41467-018-06555-w |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b23404a139584ec9a4a68b1d8fe3b16c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b23404a139584ec9a4a68b1d8fe3b16c</doaj_id><sourcerecordid>2116412653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-55dfc552d649c5b9d03027f05e4c0585e0e600ce83b2c9da2909909d55e776f63</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhSMEolXpH2AViQ2bUL8fGyRUAR2piAVlbTn2TcajjD3YSUf8e8ykopQFliVf2d89uj6naV5j9A4jqq4Kw0zIDmHVIcE5747PmnOCGO6wJPT5X_VZc1nKDtVFNVaMvWzOKCJKKqTPm83dMZS5tXGcoPNwgOghzq1L0S9uDvdhDlBa63Iqpf2SvpGrMdvDFiK0W5ghp90SK5diedW8GOxU4PLhvGi-f_p4d33T3X79vLn-cNs5juXcce4HxznxgmnHe-1RHUYOiANziCsOCARCDhTtidPeEo103Z5zkFIMgl40m1XXJ7szhxz2Nv80yQZzukh5NDbPwU1gekIZYhZTzRUDpy2zQvXYqwFoj4WrWu9XrcPS78G7-vVspyeiT19i2Jox3RtRjSVEVoG3DwI5_VigzGYfioNpshHSUgzBWFTLJdIVffMPuktLjtWqE8UwEZxWiqzUyfEMw59hMDK_gzdr8KYGb07Bm2NtomtTqXAcIT9K_6frF9UEr4w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116412653</pqid></control><display><type>article</type><title>Twist angle-dependent conductivities across MoS2/graphene heterojunctions</title><source>Publicly Available Content Database</source><source>Springer Nature - Connect here FIRST to enable access</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Liao, Mengzhou ; Wu, Ze-Wen ; Du, Luojun ; Zhang, Tingting ; Wei, Zheng ; Zhu, Jianqi ; Yu, Hua ; Tang, Jian ; Gu, Lin ; Xing, Yanxia ; Yang, Rong ; Shi, Dongxia ; Yao, Yugui ; Zhang, Guangyu</creator><creatorcontrib>Liao, Mengzhou ; Wu, Ze-Wen ; Du, Luojun ; Zhang, Tingting ; Wei, Zheng ; Zhu, Jianqi ; Yu, Hua ; Tang, Jian ; Gu, Lin ; Xing, Yanxia ; Yang, Rong ; Shi, Dongxia ; Yao, Yugui ; Zhang, Guangyu</creatorcontrib><description>Van der Waals heterostructures stacked from different two-dimensional materials offer a unique platform for addressing many fundamental physics and construction of advanced devices. Twist angle between the two individual layers plays a crucial role in tuning the heterostructure properties. Here we report the experimental investigation of the twist angle-dependent conductivities in MoS
2
/graphene van der Waals heterojunctions. We found that the vertical conductivity of the heterojunction can be tuned by ∼5 times under different twist configurations, and the highest/lowest conductivity occurs at a twist angle of 0°/30°. Density functional theory simulations suggest that this conductivity change originates from the transmission coefficient difference in the heterojunctions with different twist angles. Our work provides a guidance in using the MoS
2
/graphene heterojunction for electronics, especially on reducing the contact resistance in MoS
2
devices as well as other TMDCs devices contacted by graphene.
Twisting vertically stacked individual layers of two-dimensional materials can trigger exciting fundamental physics and advanced electronic device applications. Here, the authors report five times enhancement in vertical heterojunction conductivity on rotating MoS
2
over graphene.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-018-06555-w</identifier><identifier>PMID: 30287809</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/133 ; 147/137 ; 147/3 ; 639/301/357/1018 ; 639/925/357/1018 ; Conductivity ; Contact resistance ; Density functional theory ; Graphene ; Heterojunctions ; Heterostructures ; Humanities and Social Sciences ; Molybdenum disulfide ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2018-10, Vol.9 (1), p.1-6, Article 4068</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-55dfc552d649c5b9d03027f05e4c0585e0e600ce83b2c9da2909909d55e776f63</citedby><cites>FETCH-LOGICAL-c517t-55dfc552d649c5b9d03027f05e4c0585e0e600ce83b2c9da2909909d55e776f63</cites><orcidid>0000-0002-7504-031X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2116412653/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2116412653?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,25736,27907,27908,36995,36996,44573,53774,53776,74877</link.rule.ids></links><search><creatorcontrib>Liao, Mengzhou</creatorcontrib><creatorcontrib>Wu, Ze-Wen</creatorcontrib><creatorcontrib>Du, Luojun</creatorcontrib><creatorcontrib>Zhang, Tingting</creatorcontrib><creatorcontrib>Wei, Zheng</creatorcontrib><creatorcontrib>Zhu, Jianqi</creatorcontrib><creatorcontrib>Yu, Hua</creatorcontrib><creatorcontrib>Tang, Jian</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Xing, Yanxia</creatorcontrib><creatorcontrib>Yang, Rong</creatorcontrib><creatorcontrib>Shi, Dongxia</creatorcontrib><creatorcontrib>Yao, Yugui</creatorcontrib><creatorcontrib>Zhang, Guangyu</creatorcontrib><title>Twist angle-dependent conductivities across MoS2/graphene heterojunctions</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Van der Waals heterostructures stacked from different two-dimensional materials offer a unique platform for addressing many fundamental physics and construction of advanced devices. Twist angle between the two individual layers plays a crucial role in tuning the heterostructure properties. Here we report the experimental investigation of the twist angle-dependent conductivities in MoS
2
/graphene van der Waals heterojunctions. We found that the vertical conductivity of the heterojunction can be tuned by ∼5 times under different twist configurations, and the highest/lowest conductivity occurs at a twist angle of 0°/30°. Density functional theory simulations suggest that this conductivity change originates from the transmission coefficient difference in the heterojunctions with different twist angles. Our work provides a guidance in using the MoS
2
/graphene heterojunction for electronics, especially on reducing the contact resistance in MoS
2
devices as well as other TMDCs devices contacted by graphene.
Twisting vertically stacked individual layers of two-dimensional materials can trigger exciting fundamental physics and advanced electronic device applications. Here, the authors report five times enhancement in vertical heterojunction conductivity on rotating MoS
2
over graphene.</description><subject>140/133</subject><subject>147/137</subject><subject>147/3</subject><subject>639/301/357/1018</subject><subject>639/925/357/1018</subject><subject>Conductivity</subject><subject>Contact resistance</subject><subject>Density functional theory</subject><subject>Graphene</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>Humanities and Social Sciences</subject><subject>Molybdenum disulfide</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtv1DAUhSMEolXpH2AViQ2bUL8fGyRUAR2piAVlbTn2TcajjD3YSUf8e8ykopQFliVf2d89uj6naV5j9A4jqq4Kw0zIDmHVIcE5747PmnOCGO6wJPT5X_VZc1nKDtVFNVaMvWzOKCJKKqTPm83dMZS5tXGcoPNwgOghzq1L0S9uDvdhDlBa63Iqpf2SvpGrMdvDFiK0W5ghp90SK5diedW8GOxU4PLhvGi-f_p4d33T3X79vLn-cNs5juXcce4HxznxgmnHe-1RHUYOiANziCsOCARCDhTtidPeEo103Z5zkFIMgl40m1XXJ7szhxz2Nv80yQZzukh5NDbPwU1gekIZYhZTzRUDpy2zQvXYqwFoj4WrWu9XrcPS78G7-vVspyeiT19i2Jox3RtRjSVEVoG3DwI5_VigzGYfioNpshHSUgzBWFTLJdIVffMPuktLjtWqE8UwEZxWiqzUyfEMw59hMDK_gzdr8KYGb07Bm2NtomtTqXAcIT9K_6frF9UEr4w</recordid><startdate>20181004</startdate><enddate>20181004</enddate><creator>Liao, Mengzhou</creator><creator>Wu, Ze-Wen</creator><creator>Du, Luojun</creator><creator>Zhang, Tingting</creator><creator>Wei, Zheng</creator><creator>Zhu, Jianqi</creator><creator>Yu, Hua</creator><creator>Tang, Jian</creator><creator>Gu, Lin</creator><creator>Xing, Yanxia</creator><creator>Yang, Rong</creator><creator>Shi, Dongxia</creator><creator>Yao, Yugui</creator><creator>Zhang, Guangyu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7504-031X</orcidid></search><sort><creationdate>20181004</creationdate><title>Twist angle-dependent conductivities across MoS2/graphene heterojunctions</title><author>Liao, Mengzhou ; Wu, Ze-Wen ; Du, Luojun ; Zhang, Tingting ; Wei, Zheng ; Zhu, Jianqi ; Yu, Hua ; Tang, Jian ; Gu, Lin ; Xing, Yanxia ; Yang, Rong ; Shi, Dongxia ; Yao, Yugui ; Zhang, Guangyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-55dfc552d649c5b9d03027f05e4c0585e0e600ce83b2c9da2909909d55e776f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>140/133</topic><topic>147/137</topic><topic>147/3</topic><topic>639/301/357/1018</topic><topic>639/925/357/1018</topic><topic>Conductivity</topic><topic>Contact resistance</topic><topic>Density functional theory</topic><topic>Graphene</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>Humanities and Social Sciences</topic><topic>Molybdenum disulfide</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Mengzhou</creatorcontrib><creatorcontrib>Wu, Ze-Wen</creatorcontrib><creatorcontrib>Du, Luojun</creatorcontrib><creatorcontrib>Zhang, Tingting</creatorcontrib><creatorcontrib>Wei, Zheng</creatorcontrib><creatorcontrib>Zhu, Jianqi</creatorcontrib><creatorcontrib>Yu, Hua</creatorcontrib><creatorcontrib>Tang, Jian</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Xing, Yanxia</creatorcontrib><creatorcontrib>Yang, Rong</creatorcontrib><creatorcontrib>Shi, Dongxia</creatorcontrib><creatorcontrib>Yao, Yugui</creatorcontrib><creatorcontrib>Zhang, Guangyu</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Mengzhou</au><au>Wu, Ze-Wen</au><au>Du, Luojun</au><au>Zhang, Tingting</au><au>Wei, Zheng</au><au>Zhu, Jianqi</au><au>Yu, Hua</au><au>Tang, Jian</au><au>Gu, Lin</au><au>Xing, Yanxia</au><au>Yang, Rong</au><au>Shi, Dongxia</au><au>Yao, Yugui</au><au>Zhang, Guangyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Twist angle-dependent conductivities across MoS2/graphene heterojunctions</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2018-10-04</date><risdate>2018</risdate><volume>9</volume><issue>1</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><artnum>4068</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Van der Waals heterostructures stacked from different two-dimensional materials offer a unique platform for addressing many fundamental physics and construction of advanced devices. Twist angle between the two individual layers plays a crucial role in tuning the heterostructure properties. Here we report the experimental investigation of the twist angle-dependent conductivities in MoS
2
/graphene van der Waals heterojunctions. We found that the vertical conductivity of the heterojunction can be tuned by ∼5 times under different twist configurations, and the highest/lowest conductivity occurs at a twist angle of 0°/30°. Density functional theory simulations suggest that this conductivity change originates from the transmission coefficient difference in the heterojunctions with different twist angles. Our work provides a guidance in using the MoS
2
/graphene heterojunction for electronics, especially on reducing the contact resistance in MoS
2
devices as well as other TMDCs devices contacted by graphene.
Twisting vertically stacked individual layers of two-dimensional materials can trigger exciting fundamental physics and advanced electronic device applications. Here, the authors report five times enhancement in vertical heterojunction conductivity on rotating MoS
2
over graphene.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30287809</pmid><doi>10.1038/s41467-018-06555-w</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7504-031X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2018-10, Vol.9 (1), p.1-6, Article 4068 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b23404a139584ec9a4a68b1d8fe3b16c |
source | Publicly Available Content Database; Springer Nature - Connect here FIRST to enable access; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 140/133 147/137 147/3 639/301/357/1018 639/925/357/1018 Conductivity Contact resistance Density functional theory Graphene Heterojunctions Heterostructures Humanities and Social Sciences Molybdenum disulfide multidisciplinary Science Science (multidisciplinary) |
title | Twist angle-dependent conductivities across MoS2/graphene heterojunctions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A59%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Twist%20angle-dependent%20conductivities%20across%20MoS2/graphene%20heterojunctions&rft.jtitle=Nature%20communications&rft.au=Liao,%20Mengzhou&rft.date=2018-10-04&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.artnum=4068&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-018-06555-w&rft_dat=%3Cproquest_doaj_%3E2116412653%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-55dfc552d649c5b9d03027f05e4c0585e0e600ce83b2c9da2909909d55e776f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2116412653&rft_id=info:pmid/30287809&rfr_iscdi=true |