Loading…

Twist angle-dependent conductivities across MoS2/graphene heterojunctions

Van der Waals heterostructures stacked from different two-dimensional materials offer a unique platform for addressing many fundamental physics and construction of advanced devices. Twist angle between the two individual layers plays a crucial role in tuning the heterostructure properties. Here we r...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2018-10, Vol.9 (1), p.1-6, Article 4068
Main Authors: Liao, Mengzhou, Wu, Ze-Wen, Du, Luojun, Zhang, Tingting, Wei, Zheng, Zhu, Jianqi, Yu, Hua, Tang, Jian, Gu, Lin, Xing, Yanxia, Yang, Rong, Shi, Dongxia, Yao, Yugui, Zhang, Guangyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c517t-55dfc552d649c5b9d03027f05e4c0585e0e600ce83b2c9da2909909d55e776f63
cites cdi_FETCH-LOGICAL-c517t-55dfc552d649c5b9d03027f05e4c0585e0e600ce83b2c9da2909909d55e776f63
container_end_page 6
container_issue 1
container_start_page 1
container_title Nature communications
container_volume 9
creator Liao, Mengzhou
Wu, Ze-Wen
Du, Luojun
Zhang, Tingting
Wei, Zheng
Zhu, Jianqi
Yu, Hua
Tang, Jian
Gu, Lin
Xing, Yanxia
Yang, Rong
Shi, Dongxia
Yao, Yugui
Zhang, Guangyu
description Van der Waals heterostructures stacked from different two-dimensional materials offer a unique platform for addressing many fundamental physics and construction of advanced devices. Twist angle between the two individual layers plays a crucial role in tuning the heterostructure properties. Here we report the experimental investigation of the twist angle-dependent conductivities in MoS 2 /graphene van der Waals heterojunctions. We found that the vertical conductivity of the heterojunction can be tuned by ∼5 times under different twist configurations, and the highest/lowest conductivity occurs at a twist angle of 0°/30°. Density functional theory simulations suggest that this conductivity change originates from the transmission coefficient difference in the heterojunctions with different twist angles. Our work provides a guidance in using the MoS 2 /graphene heterojunction for electronics, especially on reducing the contact resistance in MoS 2 devices as well as other TMDCs devices contacted by graphene. Twisting vertically stacked individual layers of two-dimensional materials can trigger exciting fundamental physics and advanced electronic device applications. Here, the authors report five times enhancement in vertical heterojunction conductivity on rotating MoS 2 over graphene.
doi_str_mv 10.1038/s41467-018-06555-w
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b23404a139584ec9a4a68b1d8fe3b16c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b23404a139584ec9a4a68b1d8fe3b16c</doaj_id><sourcerecordid>2116412653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-55dfc552d649c5b9d03027f05e4c0585e0e600ce83b2c9da2909909d55e776f63</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhSMEolXpH2AViQ2bUL8fGyRUAR2piAVlbTn2TcajjD3YSUf8e8ykopQFliVf2d89uj6naV5j9A4jqq4Kw0zIDmHVIcE5747PmnOCGO6wJPT5X_VZc1nKDtVFNVaMvWzOKCJKKqTPm83dMZS5tXGcoPNwgOghzq1L0S9uDvdhDlBa63Iqpf2SvpGrMdvDFiK0W5ghp90SK5diedW8GOxU4PLhvGi-f_p4d33T3X79vLn-cNs5juXcce4HxznxgmnHe-1RHUYOiANziCsOCARCDhTtidPeEo103Z5zkFIMgl40m1XXJ7szhxz2Nv80yQZzukh5NDbPwU1gekIZYhZTzRUDpy2zQvXYqwFoj4WrWu9XrcPS78G7-vVspyeiT19i2Jox3RtRjSVEVoG3DwI5_VigzGYfioNpshHSUgzBWFTLJdIVffMPuktLjtWqE8UwEZxWiqzUyfEMw59hMDK_gzdr8KYGb07Bm2NtomtTqXAcIT9K_6frF9UEr4w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116412653</pqid></control><display><type>article</type><title>Twist angle-dependent conductivities across MoS2/graphene heterojunctions</title><source>Publicly Available Content Database</source><source>Springer Nature - Connect here FIRST to enable access</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Liao, Mengzhou ; Wu, Ze-Wen ; Du, Luojun ; Zhang, Tingting ; Wei, Zheng ; Zhu, Jianqi ; Yu, Hua ; Tang, Jian ; Gu, Lin ; Xing, Yanxia ; Yang, Rong ; Shi, Dongxia ; Yao, Yugui ; Zhang, Guangyu</creator><creatorcontrib>Liao, Mengzhou ; Wu, Ze-Wen ; Du, Luojun ; Zhang, Tingting ; Wei, Zheng ; Zhu, Jianqi ; Yu, Hua ; Tang, Jian ; Gu, Lin ; Xing, Yanxia ; Yang, Rong ; Shi, Dongxia ; Yao, Yugui ; Zhang, Guangyu</creatorcontrib><description>Van der Waals heterostructures stacked from different two-dimensional materials offer a unique platform for addressing many fundamental physics and construction of advanced devices. Twist angle between the two individual layers plays a crucial role in tuning the heterostructure properties. Here we report the experimental investigation of the twist angle-dependent conductivities in MoS 2 /graphene van der Waals heterojunctions. We found that the vertical conductivity of the heterojunction can be tuned by ∼5 times under different twist configurations, and the highest/lowest conductivity occurs at a twist angle of 0°/30°. Density functional theory simulations suggest that this conductivity change originates from the transmission coefficient difference in the heterojunctions with different twist angles. Our work provides a guidance in using the MoS 2 /graphene heterojunction for electronics, especially on reducing the contact resistance in MoS 2 devices as well as other TMDCs devices contacted by graphene. Twisting vertically stacked individual layers of two-dimensional materials can trigger exciting fundamental physics and advanced electronic device applications. Here, the authors report five times enhancement in vertical heterojunction conductivity on rotating MoS 2 over graphene.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-018-06555-w</identifier><identifier>PMID: 30287809</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/133 ; 147/137 ; 147/3 ; 639/301/357/1018 ; 639/925/357/1018 ; Conductivity ; Contact resistance ; Density functional theory ; Graphene ; Heterojunctions ; Heterostructures ; Humanities and Social Sciences ; Molybdenum disulfide ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2018-10, Vol.9 (1), p.1-6, Article 4068</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-55dfc552d649c5b9d03027f05e4c0585e0e600ce83b2c9da2909909d55e776f63</citedby><cites>FETCH-LOGICAL-c517t-55dfc552d649c5b9d03027f05e4c0585e0e600ce83b2c9da2909909d55e776f63</cites><orcidid>0000-0002-7504-031X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2116412653/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2116412653?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,25736,27907,27908,36995,36996,44573,53774,53776,74877</link.rule.ids></links><search><creatorcontrib>Liao, Mengzhou</creatorcontrib><creatorcontrib>Wu, Ze-Wen</creatorcontrib><creatorcontrib>Du, Luojun</creatorcontrib><creatorcontrib>Zhang, Tingting</creatorcontrib><creatorcontrib>Wei, Zheng</creatorcontrib><creatorcontrib>Zhu, Jianqi</creatorcontrib><creatorcontrib>Yu, Hua</creatorcontrib><creatorcontrib>Tang, Jian</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Xing, Yanxia</creatorcontrib><creatorcontrib>Yang, Rong</creatorcontrib><creatorcontrib>Shi, Dongxia</creatorcontrib><creatorcontrib>Yao, Yugui</creatorcontrib><creatorcontrib>Zhang, Guangyu</creatorcontrib><title>Twist angle-dependent conductivities across MoS2/graphene heterojunctions</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Van der Waals heterostructures stacked from different two-dimensional materials offer a unique platform for addressing many fundamental physics and construction of advanced devices. Twist angle between the two individual layers plays a crucial role in tuning the heterostructure properties. Here we report the experimental investigation of the twist angle-dependent conductivities in MoS 2 /graphene van der Waals heterojunctions. We found that the vertical conductivity of the heterojunction can be tuned by ∼5 times under different twist configurations, and the highest/lowest conductivity occurs at a twist angle of 0°/30°. Density functional theory simulations suggest that this conductivity change originates from the transmission coefficient difference in the heterojunctions with different twist angles. Our work provides a guidance in using the MoS 2 /graphene heterojunction for electronics, especially on reducing the contact resistance in MoS 2 devices as well as other TMDCs devices contacted by graphene. Twisting vertically stacked individual layers of two-dimensional materials can trigger exciting fundamental physics and advanced electronic device applications. Here, the authors report five times enhancement in vertical heterojunction conductivity on rotating MoS 2 over graphene.</description><subject>140/133</subject><subject>147/137</subject><subject>147/3</subject><subject>639/301/357/1018</subject><subject>639/925/357/1018</subject><subject>Conductivity</subject><subject>Contact resistance</subject><subject>Density functional theory</subject><subject>Graphene</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>Humanities and Social Sciences</subject><subject>Molybdenum disulfide</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtv1DAUhSMEolXpH2AViQ2bUL8fGyRUAR2piAVlbTn2TcajjD3YSUf8e8ykopQFliVf2d89uj6naV5j9A4jqq4Kw0zIDmHVIcE5747PmnOCGO6wJPT5X_VZc1nKDtVFNVaMvWzOKCJKKqTPm83dMZS5tXGcoPNwgOghzq1L0S9uDvdhDlBa63Iqpf2SvpGrMdvDFiK0W5ghp90SK5diedW8GOxU4PLhvGi-f_p4d33T3X79vLn-cNs5juXcce4HxznxgmnHe-1RHUYOiANziCsOCARCDhTtidPeEo103Z5zkFIMgl40m1XXJ7szhxz2Nv80yQZzukh5NDbPwU1gekIZYhZTzRUDpy2zQvXYqwFoj4WrWu9XrcPS78G7-vVspyeiT19i2Jox3RtRjSVEVoG3DwI5_VigzGYfioNpshHSUgzBWFTLJdIVffMPuktLjtWqE8UwEZxWiqzUyfEMw59hMDK_gzdr8KYGb07Bm2NtomtTqXAcIT9K_6frF9UEr4w</recordid><startdate>20181004</startdate><enddate>20181004</enddate><creator>Liao, Mengzhou</creator><creator>Wu, Ze-Wen</creator><creator>Du, Luojun</creator><creator>Zhang, Tingting</creator><creator>Wei, Zheng</creator><creator>Zhu, Jianqi</creator><creator>Yu, Hua</creator><creator>Tang, Jian</creator><creator>Gu, Lin</creator><creator>Xing, Yanxia</creator><creator>Yang, Rong</creator><creator>Shi, Dongxia</creator><creator>Yao, Yugui</creator><creator>Zhang, Guangyu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7504-031X</orcidid></search><sort><creationdate>20181004</creationdate><title>Twist angle-dependent conductivities across MoS2/graphene heterojunctions</title><author>Liao, Mengzhou ; Wu, Ze-Wen ; Du, Luojun ; Zhang, Tingting ; Wei, Zheng ; Zhu, Jianqi ; Yu, Hua ; Tang, Jian ; Gu, Lin ; Xing, Yanxia ; Yang, Rong ; Shi, Dongxia ; Yao, Yugui ; Zhang, Guangyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-55dfc552d649c5b9d03027f05e4c0585e0e600ce83b2c9da2909909d55e776f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>140/133</topic><topic>147/137</topic><topic>147/3</topic><topic>639/301/357/1018</topic><topic>639/925/357/1018</topic><topic>Conductivity</topic><topic>Contact resistance</topic><topic>Density functional theory</topic><topic>Graphene</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>Humanities and Social Sciences</topic><topic>Molybdenum disulfide</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Mengzhou</creatorcontrib><creatorcontrib>Wu, Ze-Wen</creatorcontrib><creatorcontrib>Du, Luojun</creatorcontrib><creatorcontrib>Zhang, Tingting</creatorcontrib><creatorcontrib>Wei, Zheng</creatorcontrib><creatorcontrib>Zhu, Jianqi</creatorcontrib><creatorcontrib>Yu, Hua</creatorcontrib><creatorcontrib>Tang, Jian</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Xing, Yanxia</creatorcontrib><creatorcontrib>Yang, Rong</creatorcontrib><creatorcontrib>Shi, Dongxia</creatorcontrib><creatorcontrib>Yao, Yugui</creatorcontrib><creatorcontrib>Zhang, Guangyu</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Mengzhou</au><au>Wu, Ze-Wen</au><au>Du, Luojun</au><au>Zhang, Tingting</au><au>Wei, Zheng</au><au>Zhu, Jianqi</au><au>Yu, Hua</au><au>Tang, Jian</au><au>Gu, Lin</au><au>Xing, Yanxia</au><au>Yang, Rong</au><au>Shi, Dongxia</au><au>Yao, Yugui</au><au>Zhang, Guangyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Twist angle-dependent conductivities across MoS2/graphene heterojunctions</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2018-10-04</date><risdate>2018</risdate><volume>9</volume><issue>1</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><artnum>4068</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Van der Waals heterostructures stacked from different two-dimensional materials offer a unique platform for addressing many fundamental physics and construction of advanced devices. Twist angle between the two individual layers plays a crucial role in tuning the heterostructure properties. Here we report the experimental investigation of the twist angle-dependent conductivities in MoS 2 /graphene van der Waals heterojunctions. We found that the vertical conductivity of the heterojunction can be tuned by ∼5 times under different twist configurations, and the highest/lowest conductivity occurs at a twist angle of 0°/30°. Density functional theory simulations suggest that this conductivity change originates from the transmission coefficient difference in the heterojunctions with different twist angles. Our work provides a guidance in using the MoS 2 /graphene heterojunction for electronics, especially on reducing the contact resistance in MoS 2 devices as well as other TMDCs devices contacted by graphene. Twisting vertically stacked individual layers of two-dimensional materials can trigger exciting fundamental physics and advanced electronic device applications. Here, the authors report five times enhancement in vertical heterojunction conductivity on rotating MoS 2 over graphene.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30287809</pmid><doi>10.1038/s41467-018-06555-w</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7504-031X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2018-10, Vol.9 (1), p.1-6, Article 4068
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b23404a139584ec9a4a68b1d8fe3b16c
source Publicly Available Content Database; Springer Nature - Connect here FIRST to enable access; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 140/133
147/137
147/3
639/301/357/1018
639/925/357/1018
Conductivity
Contact resistance
Density functional theory
Graphene
Heterojunctions
Heterostructures
Humanities and Social Sciences
Molybdenum disulfide
multidisciplinary
Science
Science (multidisciplinary)
title Twist angle-dependent conductivities across MoS2/graphene heterojunctions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A59%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Twist%20angle-dependent%20conductivities%20across%20MoS2/graphene%20heterojunctions&rft.jtitle=Nature%20communications&rft.au=Liao,%20Mengzhou&rft.date=2018-10-04&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.artnum=4068&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-018-06555-w&rft_dat=%3Cproquest_doaj_%3E2116412653%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-55dfc552d649c5b9d03027f05e4c0585e0e600ce83b2c9da2909909d55e776f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2116412653&rft_id=info:pmid/30287809&rfr_iscdi=true