Loading…
A multi-criteria multi-commodity flow model for analysing transportation networks
This article proposes a novel multi-criteria multi-commodity network flow (MCMCNF) model to help transport planners and other analysts holistically assess different types of transportation systems (TS). This model provides a tool to autonomously analyse the effect of expansions, tolls, different lev...
Saved in:
Published in: | Operations Research Perspectives 2020, Vol.7, p.1-19, Article 100159 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c485t-bb342a90c8176c4a085f760b3e66c90c8780f94e24932dd77d24a25a8e1c82b03 |
---|---|
cites | cdi_FETCH-LOGICAL-c485t-bb342a90c8176c4a085f760b3e66c90c8780f94e24932dd77d24a25a8e1c82b03 |
container_end_page | 19 |
container_issue | |
container_start_page | 1 |
container_title | Operations Research Perspectives |
container_volume | 7 |
creator | Bevrani, Bayan Burdett, Robert Bhaskar, Ashish Yarlagadda, Prasad K.D.V |
description | This article proposes a novel multi-criteria multi-commodity network flow (MCMCNF) model to help transport planners and other analysts holistically assess different types of transportation systems (TS). This model provides a tool to autonomously analyse the effect of expansions, tolls, different levels of congestion and accidents leading to potential insights into a network's resilience and vulnerability, emissions distribution and risk. Unlike the mono criterion network flow models used for some time, we propose the application of multiple objectives. In this article we investigate the application of two objectives. The first maximises the flow of commodities and the second minimises travel related costs. The travel cost is modelled generically and may include the distance travelled, travel time and access charges. The considered cost function is non-linear, so different linearization strategies are suggested. These permit the model to be solved efficiently using Separable Programming techniques and the ɛ-constraint method (ECM). We have applied the proposed model to a variety of case studies and demonstrate how different forms of sensitivity analysis can be performed. The numerical investigations have highlighted the specific features of the Pareto frontiers and the resilience and flexibility of the networks considered. |
doi_str_mv | 10.1016/j.orp.2020.100159 |
format | article |
fullrecord | <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b238a4040fa4457fb54459dc464e97dc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S221471602030049X</els_id><doaj_id>oai_doaj_org_article_b238a4040fa4457fb54459dc464e97dc</doaj_id><sourcerecordid>S221471602030049X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-bb342a90c8176c4a085f760b3e66c90c8780f94e24932dd77d24a25a8e1c82b03</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOOY-gA9Cv0DnTZo2KT6N4Z_BQAR9DmmSjsy2KUl07Nvb2ik--XTuPXB-3HsQusawxICL2_3S-X5JgIw74Lw8QzNCME0ZLuD8z3yJFiHsAYBgzCnwGXpZJe1HE22qvI3GW_mzurZ12sZjUjfukAyzaZLa-UR2sjkG2-2S6GUXeuejjNZ1SWfiwfn3cIUuatkEszjpHL093L-un9Lt8-NmvdqmivI8plWVUSJLUByzQlEJPK9ZAVVmikKNNuNQl9QQWmZEa8Y0oZLkkhusOKkgm6PNxNVO7kXvbSv9UThpxbfh_E5IH61qjKhIxiUFCrWkNGd1lQ9SakULakqm1cDCE0t5F4I39S8PgxgrFiOwF2PFYqp4yNxNGTM8-WmNF0FZ0ymjrTcqDlfYf9M3p7RynQ1ilBCdF2Q4irDsC-Lkjec</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A multi-criteria multi-commodity flow model for analysing transportation networks</title><source>ScienceDirect</source><creator>Bevrani, Bayan ; Burdett, Robert ; Bhaskar, Ashish ; Yarlagadda, Prasad K.D.V</creator><creatorcontrib>Bevrani, Bayan ; Burdett, Robert ; Bhaskar, Ashish ; Yarlagadda, Prasad K.D.V</creatorcontrib><description>This article proposes a novel multi-criteria multi-commodity network flow (MCMCNF) model to help transport planners and other analysts holistically assess different types of transportation systems (TS). This model provides a tool to autonomously analyse the effect of expansions, tolls, different levels of congestion and accidents leading to potential insights into a network's resilience and vulnerability, emissions distribution and risk. Unlike the mono criterion network flow models used for some time, we propose the application of multiple objectives. In this article we investigate the application of two objectives. The first maximises the flow of commodities and the second minimises travel related costs. The travel cost is modelled generically and may include the distance travelled, travel time and access charges. The considered cost function is non-linear, so different linearization strategies are suggested. These permit the model to be solved efficiently using Separable Programming techniques and the ɛ-constraint method (ECM). We have applied the proposed model to a variety of case studies and demonstrate how different forms of sensitivity analysis can be performed. The numerical investigations have highlighted the specific features of the Pareto frontiers and the resilience and flexibility of the networks considered.</description><identifier>ISSN: 2214-7160</identifier><identifier>EISSN: 2214-7160</identifier><identifier>DOI: 10.1016/j.orp.2020.100159</identifier><language>eng</language><publisher>Amsterdam: Elsevier</publisher><subject>Adaptive capacity ; Epsilon constraint method ; Multi-criteria multi-commodity flow ; Resilience ; Transport system capacity ; Vulnerability</subject><ispartof>Operations Research Perspectives, 2020, Vol.7, p.1-19, Article 100159</ispartof><rights>2020 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-bb342a90c8176c4a085f760b3e66c90c8780f94e24932dd77d24a25a8e1c82b03</citedby><cites>FETCH-LOGICAL-c485t-bb342a90c8176c4a085f760b3e66c90c8780f94e24932dd77d24a25a8e1c82b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S221471602030049X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,4010,27900,27901,27902,45756</link.rule.ids></links><search><creatorcontrib>Bevrani, Bayan</creatorcontrib><creatorcontrib>Burdett, Robert</creatorcontrib><creatorcontrib>Bhaskar, Ashish</creatorcontrib><creatorcontrib>Yarlagadda, Prasad K.D.V</creatorcontrib><title>A multi-criteria multi-commodity flow model for analysing transportation networks</title><title>Operations Research Perspectives</title><description>This article proposes a novel multi-criteria multi-commodity network flow (MCMCNF) model to help transport planners and other analysts holistically assess different types of transportation systems (TS). This model provides a tool to autonomously analyse the effect of expansions, tolls, different levels of congestion and accidents leading to potential insights into a network's resilience and vulnerability, emissions distribution and risk. Unlike the mono criterion network flow models used for some time, we propose the application of multiple objectives. In this article we investigate the application of two objectives. The first maximises the flow of commodities and the second minimises travel related costs. The travel cost is modelled generically and may include the distance travelled, travel time and access charges. The considered cost function is non-linear, so different linearization strategies are suggested. These permit the model to be solved efficiently using Separable Programming techniques and the ɛ-constraint method (ECM). We have applied the proposed model to a variety of case studies and demonstrate how different forms of sensitivity analysis can be performed. The numerical investigations have highlighted the specific features of the Pareto frontiers and the resilience and flexibility of the networks considered.</description><subject>Adaptive capacity</subject><subject>Epsilon constraint method</subject><subject>Multi-criteria multi-commodity flow</subject><subject>Resilience</subject><subject>Transport system capacity</subject><subject>Vulnerability</subject><issn>2214-7160</issn><issn>2214-7160</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kF9LwzAUxYMoOOY-gA9Cv0DnTZo2KT6N4Z_BQAR9DmmSjsy2KUl07Nvb2ik--XTuPXB-3HsQusawxICL2_3S-X5JgIw74Lw8QzNCME0ZLuD8z3yJFiHsAYBgzCnwGXpZJe1HE22qvI3GW_mzurZ12sZjUjfukAyzaZLa-UR2sjkG2-2S6GUXeuejjNZ1SWfiwfn3cIUuatkEszjpHL093L-un9Lt8-NmvdqmivI8plWVUSJLUByzQlEJPK9ZAVVmikKNNuNQl9QQWmZEa8Y0oZLkkhusOKkgm6PNxNVO7kXvbSv9UThpxbfh_E5IH61qjKhIxiUFCrWkNGd1lQ9SakULakqm1cDCE0t5F4I39S8PgxgrFiOwF2PFYqp4yNxNGTM8-WmNF0FZ0ymjrTcqDlfYf9M3p7RynQ1ilBCdF2Q4irDsC-Lkjec</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Bevrani, Bayan</creator><creator>Burdett, Robert</creator><creator>Bhaskar, Ashish</creator><creator>Yarlagadda, Prasad K.D.V</creator><general>Elsevier</general><general>Elsevier Ltd</general><scope>OT2</scope><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>2020</creationdate><title>A multi-criteria multi-commodity flow model for analysing transportation networks</title><author>Bevrani, Bayan ; Burdett, Robert ; Bhaskar, Ashish ; Yarlagadda, Prasad K.D.V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-bb342a90c8176c4a085f760b3e66c90c8780f94e24932dd77d24a25a8e1c82b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive capacity</topic><topic>Epsilon constraint method</topic><topic>Multi-criteria multi-commodity flow</topic><topic>Resilience</topic><topic>Transport system capacity</topic><topic>Vulnerability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bevrani, Bayan</creatorcontrib><creatorcontrib>Burdett, Robert</creatorcontrib><creatorcontrib>Bhaskar, Ashish</creatorcontrib><creatorcontrib>Yarlagadda, Prasad K.D.V</creatorcontrib><collection>EconStor</collection><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Operations Research Perspectives</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bevrani, Bayan</au><au>Burdett, Robert</au><au>Bhaskar, Ashish</au><au>Yarlagadda, Prasad K.D.V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi-criteria multi-commodity flow model for analysing transportation networks</atitle><jtitle>Operations Research Perspectives</jtitle><date>2020</date><risdate>2020</risdate><volume>7</volume><spage>1</spage><epage>19</epage><pages>1-19</pages><artnum>100159</artnum><issn>2214-7160</issn><eissn>2214-7160</eissn><abstract>This article proposes a novel multi-criteria multi-commodity network flow (MCMCNF) model to help transport planners and other analysts holistically assess different types of transportation systems (TS). This model provides a tool to autonomously analyse the effect of expansions, tolls, different levels of congestion and accidents leading to potential insights into a network's resilience and vulnerability, emissions distribution and risk. Unlike the mono criterion network flow models used for some time, we propose the application of multiple objectives. In this article we investigate the application of two objectives. The first maximises the flow of commodities and the second minimises travel related costs. The travel cost is modelled generically and may include the distance travelled, travel time and access charges. The considered cost function is non-linear, so different linearization strategies are suggested. These permit the model to be solved efficiently using Separable Programming techniques and the ɛ-constraint method (ECM). We have applied the proposed model to a variety of case studies and demonstrate how different forms of sensitivity analysis can be performed. The numerical investigations have highlighted the specific features of the Pareto frontiers and the resilience and flexibility of the networks considered.</abstract><cop>Amsterdam</cop><pub>Elsevier</pub><doi>10.1016/j.orp.2020.100159</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2214-7160 |
ispartof | Operations Research Perspectives, 2020, Vol.7, p.1-19, Article 100159 |
issn | 2214-7160 2214-7160 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b238a4040fa4457fb54459dc464e97dc |
source | ScienceDirect |
subjects | Adaptive capacity Epsilon constraint method Multi-criteria multi-commodity flow Resilience Transport system capacity Vulnerability |
title | A multi-criteria multi-commodity flow model for analysing transportation networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T13%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi-criteria%20multi-commodity%20flow%20model%20for%20analysing%20transportation%20networks&rft.jtitle=Operations%20Research%20Perspectives&rft.au=Bevrani,%20Bayan&rft.date=2020&rft.volume=7&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.artnum=100159&rft.issn=2214-7160&rft.eissn=2214-7160&rft_id=info:doi/10.1016/j.orp.2020.100159&rft_dat=%3Celsevier_doaj_%3ES221471602030049X%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c485t-bb342a90c8176c4a085f760b3e66c90c8780f94e24932dd77d24a25a8e1c82b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |