Loading…

A multi-criteria multi-commodity flow model for analysing transportation networks

This article proposes a novel multi-criteria multi-commodity network flow (MCMCNF) model to help transport planners and other analysts holistically assess different types of transportation systems (TS). This model provides a tool to autonomously analyse the effect of expansions, tolls, different lev...

Full description

Saved in:
Bibliographic Details
Published in:Operations Research Perspectives 2020, Vol.7, p.1-19, Article 100159
Main Authors: Bevrani, Bayan, Burdett, Robert, Bhaskar, Ashish, Yarlagadda, Prasad K.D.V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c485t-bb342a90c8176c4a085f760b3e66c90c8780f94e24932dd77d24a25a8e1c82b03
cites cdi_FETCH-LOGICAL-c485t-bb342a90c8176c4a085f760b3e66c90c8780f94e24932dd77d24a25a8e1c82b03
container_end_page 19
container_issue
container_start_page 1
container_title Operations Research Perspectives
container_volume 7
creator Bevrani, Bayan
Burdett, Robert
Bhaskar, Ashish
Yarlagadda, Prasad K.D.V
description This article proposes a novel multi-criteria multi-commodity network flow (MCMCNF) model to help transport planners and other analysts holistically assess different types of transportation systems (TS). This model provides a tool to autonomously analyse the effect of expansions, tolls, different levels of congestion and accidents leading to potential insights into a network's resilience and vulnerability, emissions distribution and risk. Unlike the mono criterion network flow models used for some time, we propose the application of multiple objectives. In this article we investigate the application of two objectives. The first maximises the flow of commodities and the second minimises travel related costs. The travel cost is modelled generically and may include the distance travelled, travel time and access charges. The considered cost function is non-linear, so different linearization strategies are suggested. These permit the model to be solved efficiently using Separable Programming techniques and the ɛ-constraint method (ECM). We have applied the proposed model to a variety of case studies and demonstrate how different forms of sensitivity analysis can be performed. The numerical investigations have highlighted the specific features of the Pareto frontiers and the resilience and flexibility of the networks considered.
doi_str_mv 10.1016/j.orp.2020.100159
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b238a4040fa4457fb54459dc464e97dc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S221471602030049X</els_id><doaj_id>oai_doaj_org_article_b238a4040fa4457fb54459dc464e97dc</doaj_id><sourcerecordid>S221471602030049X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-bb342a90c8176c4a085f760b3e66c90c8780f94e24932dd77d24a25a8e1c82b03</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOOY-gA9Cv0DnTZo2KT6N4Z_BQAR9DmmSjsy2KUl07Nvb2ik--XTuPXB-3HsQusawxICL2_3S-X5JgIw74Lw8QzNCME0ZLuD8z3yJFiHsAYBgzCnwGXpZJe1HE22qvI3GW_mzurZ12sZjUjfukAyzaZLa-UR2sjkG2-2S6GUXeuejjNZ1SWfiwfn3cIUuatkEszjpHL093L-un9Lt8-NmvdqmivI8plWVUSJLUByzQlEJPK9ZAVVmikKNNuNQl9QQWmZEa8Y0oZLkkhusOKkgm6PNxNVO7kXvbSv9UThpxbfh_E5IH61qjKhIxiUFCrWkNGd1lQ9SakULakqm1cDCE0t5F4I39S8PgxgrFiOwF2PFYqp4yNxNGTM8-WmNF0FZ0ymjrTcqDlfYf9M3p7RynQ1ilBCdF2Q4irDsC-Lkjec</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A multi-criteria multi-commodity flow model for analysing transportation networks</title><source>ScienceDirect</source><creator>Bevrani, Bayan ; Burdett, Robert ; Bhaskar, Ashish ; Yarlagadda, Prasad K.D.V</creator><creatorcontrib>Bevrani, Bayan ; Burdett, Robert ; Bhaskar, Ashish ; Yarlagadda, Prasad K.D.V</creatorcontrib><description>This article proposes a novel multi-criteria multi-commodity network flow (MCMCNF) model to help transport planners and other analysts holistically assess different types of transportation systems (TS). This model provides a tool to autonomously analyse the effect of expansions, tolls, different levels of congestion and accidents leading to potential insights into a network's resilience and vulnerability, emissions distribution and risk. Unlike the mono criterion network flow models used for some time, we propose the application of multiple objectives. In this article we investigate the application of two objectives. The first maximises the flow of commodities and the second minimises travel related costs. The travel cost is modelled generically and may include the distance travelled, travel time and access charges. The considered cost function is non-linear, so different linearization strategies are suggested. These permit the model to be solved efficiently using Separable Programming techniques and the ɛ-constraint method (ECM). We have applied the proposed model to a variety of case studies and demonstrate how different forms of sensitivity analysis can be performed. The numerical investigations have highlighted the specific features of the Pareto frontiers and the resilience and flexibility of the networks considered.</description><identifier>ISSN: 2214-7160</identifier><identifier>EISSN: 2214-7160</identifier><identifier>DOI: 10.1016/j.orp.2020.100159</identifier><language>eng</language><publisher>Amsterdam: Elsevier</publisher><subject>Adaptive capacity ; Epsilon constraint method ; Multi-criteria multi-commodity flow ; Resilience ; Transport system capacity ; Vulnerability</subject><ispartof>Operations Research Perspectives, 2020, Vol.7, p.1-19, Article 100159</ispartof><rights>2020 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-bb342a90c8176c4a085f760b3e66c90c8780f94e24932dd77d24a25a8e1c82b03</citedby><cites>FETCH-LOGICAL-c485t-bb342a90c8176c4a085f760b3e66c90c8780f94e24932dd77d24a25a8e1c82b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S221471602030049X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,4010,27900,27901,27902,45756</link.rule.ids></links><search><creatorcontrib>Bevrani, Bayan</creatorcontrib><creatorcontrib>Burdett, Robert</creatorcontrib><creatorcontrib>Bhaskar, Ashish</creatorcontrib><creatorcontrib>Yarlagadda, Prasad K.D.V</creatorcontrib><title>A multi-criteria multi-commodity flow model for analysing transportation networks</title><title>Operations Research Perspectives</title><description>This article proposes a novel multi-criteria multi-commodity network flow (MCMCNF) model to help transport planners and other analysts holistically assess different types of transportation systems (TS). This model provides a tool to autonomously analyse the effect of expansions, tolls, different levels of congestion and accidents leading to potential insights into a network's resilience and vulnerability, emissions distribution and risk. Unlike the mono criterion network flow models used for some time, we propose the application of multiple objectives. In this article we investigate the application of two objectives. The first maximises the flow of commodities and the second minimises travel related costs. The travel cost is modelled generically and may include the distance travelled, travel time and access charges. The considered cost function is non-linear, so different linearization strategies are suggested. These permit the model to be solved efficiently using Separable Programming techniques and the ɛ-constraint method (ECM). We have applied the proposed model to a variety of case studies and demonstrate how different forms of sensitivity analysis can be performed. The numerical investigations have highlighted the specific features of the Pareto frontiers and the resilience and flexibility of the networks considered.</description><subject>Adaptive capacity</subject><subject>Epsilon constraint method</subject><subject>Multi-criteria multi-commodity flow</subject><subject>Resilience</subject><subject>Transport system capacity</subject><subject>Vulnerability</subject><issn>2214-7160</issn><issn>2214-7160</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kF9LwzAUxYMoOOY-gA9Cv0DnTZo2KT6N4Z_BQAR9DmmSjsy2KUl07Nvb2ik--XTuPXB-3HsQusawxICL2_3S-X5JgIw74Lw8QzNCME0ZLuD8z3yJFiHsAYBgzCnwGXpZJe1HE22qvI3GW_mzurZ12sZjUjfukAyzaZLa-UR2sjkG2-2S6GUXeuejjNZ1SWfiwfn3cIUuatkEszjpHL093L-un9Lt8-NmvdqmivI8plWVUSJLUByzQlEJPK9ZAVVmikKNNuNQl9QQWmZEa8Y0oZLkkhusOKkgm6PNxNVO7kXvbSv9UThpxbfh_E5IH61qjKhIxiUFCrWkNGd1lQ9SakULakqm1cDCE0t5F4I39S8PgxgrFiOwF2PFYqp4yNxNGTM8-WmNF0FZ0ymjrTcqDlfYf9M3p7RynQ1ilBCdF2Q4irDsC-Lkjec</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Bevrani, Bayan</creator><creator>Burdett, Robert</creator><creator>Bhaskar, Ashish</creator><creator>Yarlagadda, Prasad K.D.V</creator><general>Elsevier</general><general>Elsevier Ltd</general><scope>OT2</scope><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>2020</creationdate><title>A multi-criteria multi-commodity flow model for analysing transportation networks</title><author>Bevrani, Bayan ; Burdett, Robert ; Bhaskar, Ashish ; Yarlagadda, Prasad K.D.V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-bb342a90c8176c4a085f760b3e66c90c8780f94e24932dd77d24a25a8e1c82b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive capacity</topic><topic>Epsilon constraint method</topic><topic>Multi-criteria multi-commodity flow</topic><topic>Resilience</topic><topic>Transport system capacity</topic><topic>Vulnerability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bevrani, Bayan</creatorcontrib><creatorcontrib>Burdett, Robert</creatorcontrib><creatorcontrib>Bhaskar, Ashish</creatorcontrib><creatorcontrib>Yarlagadda, Prasad K.D.V</creatorcontrib><collection>EconStor</collection><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Operations Research Perspectives</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bevrani, Bayan</au><au>Burdett, Robert</au><au>Bhaskar, Ashish</au><au>Yarlagadda, Prasad K.D.V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi-criteria multi-commodity flow model for analysing transportation networks</atitle><jtitle>Operations Research Perspectives</jtitle><date>2020</date><risdate>2020</risdate><volume>7</volume><spage>1</spage><epage>19</epage><pages>1-19</pages><artnum>100159</artnum><issn>2214-7160</issn><eissn>2214-7160</eissn><abstract>This article proposes a novel multi-criteria multi-commodity network flow (MCMCNF) model to help transport planners and other analysts holistically assess different types of transportation systems (TS). This model provides a tool to autonomously analyse the effect of expansions, tolls, different levels of congestion and accidents leading to potential insights into a network's resilience and vulnerability, emissions distribution and risk. Unlike the mono criterion network flow models used for some time, we propose the application of multiple objectives. In this article we investigate the application of two objectives. The first maximises the flow of commodities and the second minimises travel related costs. The travel cost is modelled generically and may include the distance travelled, travel time and access charges. The considered cost function is non-linear, so different linearization strategies are suggested. These permit the model to be solved efficiently using Separable Programming techniques and the ɛ-constraint method (ECM). We have applied the proposed model to a variety of case studies and demonstrate how different forms of sensitivity analysis can be performed. The numerical investigations have highlighted the specific features of the Pareto frontiers and the resilience and flexibility of the networks considered.</abstract><cop>Amsterdam</cop><pub>Elsevier</pub><doi>10.1016/j.orp.2020.100159</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2214-7160
ispartof Operations Research Perspectives, 2020, Vol.7, p.1-19, Article 100159
issn 2214-7160
2214-7160
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b238a4040fa4457fb54459dc464e97dc
source ScienceDirect
subjects Adaptive capacity
Epsilon constraint method
Multi-criteria multi-commodity flow
Resilience
Transport system capacity
Vulnerability
title A multi-criteria multi-commodity flow model for analysing transportation networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T13%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi-criteria%20multi-commodity%20flow%20model%20for%20analysing%20transportation%20networks&rft.jtitle=Operations%20Research%20Perspectives&rft.au=Bevrani,%20Bayan&rft.date=2020&rft.volume=7&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.artnum=100159&rft.issn=2214-7160&rft.eissn=2214-7160&rft_id=info:doi/10.1016/j.orp.2020.100159&rft_dat=%3Celsevier_doaj_%3ES221471602030049X%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c485t-bb342a90c8176c4a085f760b3e66c90c8780f94e24932dd77d24a25a8e1c82b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true