Loading…
A Transformer-Unet Generative Adversarial Network for the Super-Resolution Reconstruction of DEMs
A new model called the Transformer-Unet Generative Adversarial Network (TUGAN) is proposed for super-resolution reconstruction of digital elevation models (DEMs). Digital elevation models are used in many fields, including environmental science, geology and agriculture. The proposed model uses a sel...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2024-10, Vol.16 (19), p.3676 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c289t-bed4631c2b8d1296162612aeb2950e89d95f62e4c3c1a0f892832e8b4238b90f3 |
container_end_page | |
container_issue | 19 |
container_start_page | 3676 |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 16 |
creator | Zheng, Xin Xu, Zhaoqi Yin, Qian Bao, Zelun Chen, Zhirui Wang, Sizhu |
description | A new model called the Transformer-Unet Generative Adversarial Network (TUGAN) is proposed for super-resolution reconstruction of digital elevation models (DEMs). Digital elevation models are used in many fields, including environmental science, geology and agriculture. The proposed model uses a self-similarity Transformer (SSTrans) as the generator and U-Net as the discriminator. SSTrans, a model that we previously proposed, can yield good reconstruction results in structurally complex areas but has little advantage when the surface is simple and smooth because too many additional details have been added to the data. To resolve this issue, we propose the novel TUGAN model, where U-Net is capable of multilayer jump connections, which enables the discriminator to consider both global and local information when making judgments. The experiments show that TUGAN achieves state-of-the-art results for all types of terrain details. |
doi_str_mv | 10.3390/rs16193676 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b24905f9ddee40fca4ca8022d58c2cb1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814409552</galeid><doaj_id>oai_doaj_org_article_b24905f9ddee40fca4ca8022d58c2cb1</doaj_id><sourcerecordid>A814409552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-bed4631c2b8d1296162612aeb2950e89d95f62e4c3c1a0f892832e8b4238b90f3</originalsourceid><addsrcrecordid>eNpNUV1rFTEQXcSCpfalv2DBN2FrMsmmyeOl1rZQLfTjOWSTSc313s11kq347429os48zAfnHA4zXXfC2akQhn2gwhU3Qp2pV90hsDMYJBh4_V__pjsuZc1aCMENk4edW_UP5OYSM22RhscZa3-JM5Kr6Rn7VXhGKo6S2_RfsP7I9K1v0L5-xf5-2TXGHZa8WWrKc3-HPs-l0uJfxhz7jxefy9vuILpNweM_9ah7_HTxcH413NxeXp-vbgYP2tRhwiCV4B4mHTgYxRUoDg4nMCNDbYIZowKUXnjuWNQGtADUkwShJ8OiOOqu97ohu7XdUdo6-mmzS_ZlkenJOqrJb9BOIA0bowkBUbLonfROM4Awag9-4k3r3V5rR_n7gqXadV5obvat4Fyp0XBQDXW6Rz25JprmmCs53zLgNrVTYExtv9JcSmbGERrh_Z7gKZdCGP_a5Mz-fqH990LxC1zCjV4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116659126</pqid></control><display><type>article</type><title>A Transformer-Unet Generative Adversarial Network for the Super-Resolution Reconstruction of DEMs</title><source>Publicly Available Content Database</source><creator>Zheng, Xin ; Xu, Zhaoqi ; Yin, Qian ; Bao, Zelun ; Chen, Zhirui ; Wang, Sizhu</creator><creatorcontrib>Zheng, Xin ; Xu, Zhaoqi ; Yin, Qian ; Bao, Zelun ; Chen, Zhirui ; Wang, Sizhu</creatorcontrib><description>A new model called the Transformer-Unet Generative Adversarial Network (TUGAN) is proposed for super-resolution reconstruction of digital elevation models (DEMs). Digital elevation models are used in many fields, including environmental science, geology and agriculture. The proposed model uses a self-similarity Transformer (SSTrans) as the generator and U-Net as the discriminator. SSTrans, a model that we previously proposed, can yield good reconstruction results in structurally complex areas but has little advantage when the surface is simple and smooth because too many additional details have been added to the data. To resolve this issue, we propose the novel TUGAN model, where U-Net is capable of multilayer jump connections, which enables the discriminator to consider both global and local information when making judgments. The experiments show that TUGAN achieves state-of-the-art results for all types of terrain details.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs16193676</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Comparative analysis ; Deep learning ; DEM ; Digital Elevation Models ; Discriminators ; Electronic data processing ; Elevation ; Environmental science ; Feedback ; GAN ; Generative adversarial networks ; Geology ; Machine learning ; Methods ; Multilayers ; Neural networks ; Reconstruction ; Self-similarity ; super-resolution ; Technology application ; Topography ; transformer ; Transformers ; U-Net</subject><ispartof>Remote sensing (Basel, Switzerland), 2024-10, Vol.16 (19), p.3676</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-bed4631c2b8d1296162612aeb2950e89d95f62e4c3c1a0f892832e8b4238b90f3</cites><orcidid>0000-0002-0354-5490 ; 0000-0001-7585-4156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3116659126/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3116659126?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Zheng, Xin</creatorcontrib><creatorcontrib>Xu, Zhaoqi</creatorcontrib><creatorcontrib>Yin, Qian</creatorcontrib><creatorcontrib>Bao, Zelun</creatorcontrib><creatorcontrib>Chen, Zhirui</creatorcontrib><creatorcontrib>Wang, Sizhu</creatorcontrib><title>A Transformer-Unet Generative Adversarial Network for the Super-Resolution Reconstruction of DEMs</title><title>Remote sensing (Basel, Switzerland)</title><description>A new model called the Transformer-Unet Generative Adversarial Network (TUGAN) is proposed for super-resolution reconstruction of digital elevation models (DEMs). Digital elevation models are used in many fields, including environmental science, geology and agriculture. The proposed model uses a self-similarity Transformer (SSTrans) as the generator and U-Net as the discriminator. SSTrans, a model that we previously proposed, can yield good reconstruction results in structurally complex areas but has little advantage when the surface is simple and smooth because too many additional details have been added to the data. To resolve this issue, we propose the novel TUGAN model, where U-Net is capable of multilayer jump connections, which enables the discriminator to consider both global and local information when making judgments. The experiments show that TUGAN achieves state-of-the-art results for all types of terrain details.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Comparative analysis</subject><subject>Deep learning</subject><subject>DEM</subject><subject>Digital Elevation Models</subject><subject>Discriminators</subject><subject>Electronic data processing</subject><subject>Elevation</subject><subject>Environmental science</subject><subject>Feedback</subject><subject>GAN</subject><subject>Generative adversarial networks</subject><subject>Geology</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Reconstruction</subject><subject>Self-similarity</subject><subject>super-resolution</subject><subject>Technology application</subject><subject>Topography</subject><subject>transformer</subject><subject>Transformers</subject><subject>U-Net</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1rFTEQXcSCpfalv2DBN2FrMsmmyeOl1rZQLfTjOWSTSc313s11kq347429os48zAfnHA4zXXfC2akQhn2gwhU3Qp2pV90hsDMYJBh4_V__pjsuZc1aCMENk4edW_UP5OYSM22RhscZa3-JM5Kr6Rn7VXhGKo6S2_RfsP7I9K1v0L5-xf5-2TXGHZa8WWrKc3-HPs-l0uJfxhz7jxefy9vuILpNweM_9ah7_HTxcH413NxeXp-vbgYP2tRhwiCV4B4mHTgYxRUoDg4nMCNDbYIZowKUXnjuWNQGtADUkwShJ8OiOOqu97ohu7XdUdo6-mmzS_ZlkenJOqrJb9BOIA0bowkBUbLonfROM4Awag9-4k3r3V5rR_n7gqXadV5obvat4Fyp0XBQDXW6Rz25JprmmCs53zLgNrVTYExtv9JcSmbGERrh_Z7gKZdCGP_a5Mz-fqH990LxC1zCjV4</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Zheng, Xin</creator><creator>Xu, Zhaoqi</creator><creator>Yin, Qian</creator><creator>Bao, Zelun</creator><creator>Chen, Zhirui</creator><creator>Wang, Sizhu</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0354-5490</orcidid><orcidid>https://orcid.org/0000-0001-7585-4156</orcidid></search><sort><creationdate>20241001</creationdate><title>A Transformer-Unet Generative Adversarial Network for the Super-Resolution Reconstruction of DEMs</title><author>Zheng, Xin ; Xu, Zhaoqi ; Yin, Qian ; Bao, Zelun ; Chen, Zhirui ; Wang, Sizhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-bed4631c2b8d1296162612aeb2950e89d95f62e4c3c1a0f892832e8b4238b90f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Comparative analysis</topic><topic>Deep learning</topic><topic>DEM</topic><topic>Digital Elevation Models</topic><topic>Discriminators</topic><topic>Electronic data processing</topic><topic>Elevation</topic><topic>Environmental science</topic><topic>Feedback</topic><topic>GAN</topic><topic>Generative adversarial networks</topic><topic>Geology</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Reconstruction</topic><topic>Self-similarity</topic><topic>super-resolution</topic><topic>Technology application</topic><topic>Topography</topic><topic>transformer</topic><topic>Transformers</topic><topic>U-Net</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Xin</creatorcontrib><creatorcontrib>Xu, Zhaoqi</creatorcontrib><creatorcontrib>Yin, Qian</creatorcontrib><creatorcontrib>Bao, Zelun</creatorcontrib><creatorcontrib>Chen, Zhirui</creatorcontrib><creatorcontrib>Wang, Sizhu</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Xin</au><au>Xu, Zhaoqi</au><au>Yin, Qian</au><au>Bao, Zelun</au><au>Chen, Zhirui</au><au>Wang, Sizhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Transformer-Unet Generative Adversarial Network for the Super-Resolution Reconstruction of DEMs</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>16</volume><issue>19</issue><spage>3676</spage><pages>3676-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>A new model called the Transformer-Unet Generative Adversarial Network (TUGAN) is proposed for super-resolution reconstruction of digital elevation models (DEMs). Digital elevation models are used in many fields, including environmental science, geology and agriculture. The proposed model uses a self-similarity Transformer (SSTrans) as the generator and U-Net as the discriminator. SSTrans, a model that we previously proposed, can yield good reconstruction results in structurally complex areas but has little advantage when the surface is simple and smooth because too many additional details have been added to the data. To resolve this issue, we propose the novel TUGAN model, where U-Net is capable of multilayer jump connections, which enables the discriminator to consider both global and local information when making judgments. The experiments show that TUGAN achieves state-of-the-art results for all types of terrain details.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs16193676</doi><orcidid>https://orcid.org/0000-0002-0354-5490</orcidid><orcidid>https://orcid.org/0000-0001-7585-4156</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2024-10, Vol.16 (19), p.3676 |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b24905f9ddee40fca4ca8022d58c2cb1 |
source | Publicly Available Content Database |
subjects | Algorithms Artificial intelligence Comparative analysis Deep learning DEM Digital Elevation Models Discriminators Electronic data processing Elevation Environmental science Feedback GAN Generative adversarial networks Geology Machine learning Methods Multilayers Neural networks Reconstruction Self-similarity super-resolution Technology application Topography transformer Transformers U-Net |
title | A Transformer-Unet Generative Adversarial Network for the Super-Resolution Reconstruction of DEMs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A37%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Transformer-Unet%20Generative%20Adversarial%20Network%20for%20the%20Super-Resolution%20Reconstruction%20of%20DEMs&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Zheng,%20Xin&rft.date=2024-10-01&rft.volume=16&rft.issue=19&rft.spage=3676&rft.pages=3676-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs16193676&rft_dat=%3Cgale_doaj_%3EA814409552%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-bed4631c2b8d1296162612aeb2950e89d95f62e4c3c1a0f892832e8b4238b90f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3116659126&rft_id=info:pmid/&rft_galeid=A814409552&rfr_iscdi=true |