Loading…

Shear Strengthening with a Fiber-Reinforced Cementitious Matrix of Reinforced Concrete Elements Under Different Levels of Loads: An Experimental Investigation

This article explores the impact of strengthening reinforced concrete beams under different load levels, focusing on the use of polyphenylene benzobisoxazole (P.B.O.) fibers in a stabilized inorganic matrix to enhance the shear capacity. This research examines the interaction between modern composit...

Full description

Saved in:
Bibliographic Details
Published in:Construction materials 2024-11, Vol.4 (4), p.721-737
Main Authors: Vegera, Pavlo, Borzovic, Viktor, Blikharskyi, Zinovii, Grynyova, Iryna, Baran, Jaroslav
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1095-49142d152eea68ff91113b56b0469f1e1bc639f90648d99d1d7b16b3ff063f2c3
container_end_page 737
container_issue 4
container_start_page 721
container_title Construction materials
container_volume 4
creator Vegera, Pavlo
Borzovic, Viktor
Blikharskyi, Zinovii
Grynyova, Iryna
Baran, Jaroslav
description This article explores the impact of strengthening reinforced concrete beams under different load levels, focusing on the use of polyphenylene benzobisoxazole (P.B.O.) fibers in a stabilized inorganic matrix to enhance the shear capacity. This research examines the interaction between modern composite materials and existing reinforced concrete structures, highlighting the practical challenges when the full unloading of structures is impossible. The experiments demonstrate that strengthening significantly increases the shear strength, with a maximum enhancement of 25%. However, the effect decreases as the load applied during strengthening increases, dropping to 16% at 70% of the ultimate load. This research also highlights the importance of refining current calculation methods due to the complex stress–strain state of beams and the unpredictable nature of shear failures. It concludes that composite materials, especially fiber-reinforced cementitious matrix (FRCM) systems, provide a practical solution for enhancing structural performance while maintaining the integrity and safety of concrete elements. This article emphasizes that the strengthening efficiency should be adjusted based on the applied load, suggesting a 5% reduction in effectiveness for every 10% increase in the initial load level. The findings support the empirical hypothesis that the shear strength improvement diminishes linearly with higher load levels during strengthening.
doi_str_mv 10.3390/constrmater4040039
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b255be1e26f2400797f7961ee1258c75</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b255be1e26f2400797f7961ee1258c75</doaj_id><sourcerecordid>oai_doaj_org_article_b255be1e26f2400797f7961ee1258c75</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1095-49142d152eea68ff91113b56b0469f1e1bc639f90648d99d1d7b16b3ff063f2c3</originalsourceid><addsrcrecordid>eNplkdtOAjEQhjdGEwnyAl71BVZ72O1uvSMISoIxEbnedLtTKFla0lbEl_FZXcAYEq9mMvnn--eQJLcE3zEm8L1yNkS_kRF8hjOMmbhIepQXLC0ILi_P8utkEMIaY0xLQTKR95Lv-QqkR_PowS7jCqyxS_Rp4gpJNDE1-PQNjNXOK2jQCDZgo4nGfQT0IqM3e-Q0Olc4qzxEQOP2qA1oYRvw6NFoDZ1FRDPYQRsObTMnm_CAhhaN91vw5qCXLZraHYRolrKzsTfJlZZtgMFv7CeLyfh99JzOXp-mo-EsVQSLPM26bWhDcgogeam1IISwOuc1zrjQBEitOBNaYJ6VjRANaYqa8JppjTnTVLF-Mj1xGyfX1bYbRvqvyklTHQvOLyvpo1EtVDXN8xoIUK5pd-xCFLoQnAAQmpeqyDsWPbGUdyF40H88gqvDw6r_D2M_JbWOiQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Shear Strengthening with a Fiber-Reinforced Cementitious Matrix of Reinforced Concrete Elements Under Different Levels of Loads: An Experimental Investigation</title><source>DOAJ Directory of Open Access Journals</source><creator>Vegera, Pavlo ; Borzovic, Viktor ; Blikharskyi, Zinovii ; Grynyova, Iryna ; Baran, Jaroslav</creator><creatorcontrib>Vegera, Pavlo ; Borzovic, Viktor ; Blikharskyi, Zinovii ; Grynyova, Iryna ; Baran, Jaroslav</creatorcontrib><description>This article explores the impact of strengthening reinforced concrete beams under different load levels, focusing on the use of polyphenylene benzobisoxazole (P.B.O.) fibers in a stabilized inorganic matrix to enhance the shear capacity. This research examines the interaction between modern composite materials and existing reinforced concrete structures, highlighting the practical challenges when the full unloading of structures is impossible. The experiments demonstrate that strengthening significantly increases the shear strength, with a maximum enhancement of 25%. However, the effect decreases as the load applied during strengthening increases, dropping to 16% at 70% of the ultimate load. This research also highlights the importance of refining current calculation methods due to the complex stress–strain state of beams and the unpredictable nature of shear failures. It concludes that composite materials, especially fiber-reinforced cementitious matrix (FRCM) systems, provide a practical solution for enhancing structural performance while maintaining the integrity and safety of concrete elements. This article emphasizes that the strengthening efficiency should be adjusted based on the applied load, suggesting a 5% reduction in effectiveness for every 10% increase in the initial load level. The findings support the empirical hypothesis that the shear strength improvement diminishes linearly with higher load levels during strengthening.</description><identifier>ISSN: 2673-7108</identifier><identifier>EISSN: 2673-7108</identifier><identifier>DOI: 10.3390/constrmater4040039</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>fiber-reinforced cementitious matrix ; FRCM ; RC beams ; shear strength ; strengthening</subject><ispartof>Construction materials, 2024-11, Vol.4 (4), p.721-737</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1095-49142d152eea68ff91113b56b0469f1e1bc639f90648d99d1d7b16b3ff063f2c3</cites><orcidid>0000-0003-0429-0853</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,2096,27905,27906</link.rule.ids></links><search><creatorcontrib>Vegera, Pavlo</creatorcontrib><creatorcontrib>Borzovic, Viktor</creatorcontrib><creatorcontrib>Blikharskyi, Zinovii</creatorcontrib><creatorcontrib>Grynyova, Iryna</creatorcontrib><creatorcontrib>Baran, Jaroslav</creatorcontrib><title>Shear Strengthening with a Fiber-Reinforced Cementitious Matrix of Reinforced Concrete Elements Under Different Levels of Loads: An Experimental Investigation</title><title>Construction materials</title><description>This article explores the impact of strengthening reinforced concrete beams under different load levels, focusing on the use of polyphenylene benzobisoxazole (P.B.O.) fibers in a stabilized inorganic matrix to enhance the shear capacity. This research examines the interaction between modern composite materials and existing reinforced concrete structures, highlighting the practical challenges when the full unloading of structures is impossible. The experiments demonstrate that strengthening significantly increases the shear strength, with a maximum enhancement of 25%. However, the effect decreases as the load applied during strengthening increases, dropping to 16% at 70% of the ultimate load. This research also highlights the importance of refining current calculation methods due to the complex stress–strain state of beams and the unpredictable nature of shear failures. It concludes that composite materials, especially fiber-reinforced cementitious matrix (FRCM) systems, provide a practical solution for enhancing structural performance while maintaining the integrity and safety of concrete elements. This article emphasizes that the strengthening efficiency should be adjusted based on the applied load, suggesting a 5% reduction in effectiveness for every 10% increase in the initial load level. The findings support the empirical hypothesis that the shear strength improvement diminishes linearly with higher load levels during strengthening.</description><subject>fiber-reinforced cementitious matrix</subject><subject>FRCM</subject><subject>RC beams</subject><subject>shear strength</subject><subject>strengthening</subject><issn>2673-7108</issn><issn>2673-7108</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplkdtOAjEQhjdGEwnyAl71BVZ72O1uvSMISoIxEbnedLtTKFla0lbEl_FZXcAYEq9mMvnn--eQJLcE3zEm8L1yNkS_kRF8hjOMmbhIepQXLC0ILi_P8utkEMIaY0xLQTKR95Lv-QqkR_PowS7jCqyxS_Rp4gpJNDE1-PQNjNXOK2jQCDZgo4nGfQT0IqM3e-Q0Olc4qzxEQOP2qA1oYRvw6NFoDZ1FRDPYQRsObTMnm_CAhhaN91vw5qCXLZraHYRolrKzsTfJlZZtgMFv7CeLyfh99JzOXp-mo-EsVQSLPM26bWhDcgogeam1IISwOuc1zrjQBEitOBNaYJ6VjRANaYqa8JppjTnTVLF-Mj1xGyfX1bYbRvqvyklTHQvOLyvpo1EtVDXN8xoIUK5pd-xCFLoQnAAQmpeqyDsWPbGUdyF40H88gqvDw6r_D2M_JbWOiQ</recordid><startdate>20241122</startdate><enddate>20241122</enddate><creator>Vegera, Pavlo</creator><creator>Borzovic, Viktor</creator><creator>Blikharskyi, Zinovii</creator><creator>Grynyova, Iryna</creator><creator>Baran, Jaroslav</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0429-0853</orcidid></search><sort><creationdate>20241122</creationdate><title>Shear Strengthening with a Fiber-Reinforced Cementitious Matrix of Reinforced Concrete Elements Under Different Levels of Loads: An Experimental Investigation</title><author>Vegera, Pavlo ; Borzovic, Viktor ; Blikharskyi, Zinovii ; Grynyova, Iryna ; Baran, Jaroslav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1095-49142d152eea68ff91113b56b0469f1e1bc639f90648d99d1d7b16b3ff063f2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>fiber-reinforced cementitious matrix</topic><topic>FRCM</topic><topic>RC beams</topic><topic>shear strength</topic><topic>strengthening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vegera, Pavlo</creatorcontrib><creatorcontrib>Borzovic, Viktor</creatorcontrib><creatorcontrib>Blikharskyi, Zinovii</creatorcontrib><creatorcontrib>Grynyova, Iryna</creatorcontrib><creatorcontrib>Baran, Jaroslav</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Construction materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vegera, Pavlo</au><au>Borzovic, Viktor</au><au>Blikharskyi, Zinovii</au><au>Grynyova, Iryna</au><au>Baran, Jaroslav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shear Strengthening with a Fiber-Reinforced Cementitious Matrix of Reinforced Concrete Elements Under Different Levels of Loads: An Experimental Investigation</atitle><jtitle>Construction materials</jtitle><date>2024-11-22</date><risdate>2024</risdate><volume>4</volume><issue>4</issue><spage>721</spage><epage>737</epage><pages>721-737</pages><issn>2673-7108</issn><eissn>2673-7108</eissn><abstract>This article explores the impact of strengthening reinforced concrete beams under different load levels, focusing on the use of polyphenylene benzobisoxazole (P.B.O.) fibers in a stabilized inorganic matrix to enhance the shear capacity. This research examines the interaction between modern composite materials and existing reinforced concrete structures, highlighting the practical challenges when the full unloading of structures is impossible. The experiments demonstrate that strengthening significantly increases the shear strength, with a maximum enhancement of 25%. However, the effect decreases as the load applied during strengthening increases, dropping to 16% at 70% of the ultimate load. This research also highlights the importance of refining current calculation methods due to the complex stress–strain state of beams and the unpredictable nature of shear failures. It concludes that composite materials, especially fiber-reinforced cementitious matrix (FRCM) systems, provide a practical solution for enhancing structural performance while maintaining the integrity and safety of concrete elements. This article emphasizes that the strengthening efficiency should be adjusted based on the applied load, suggesting a 5% reduction in effectiveness for every 10% increase in the initial load level. The findings support the empirical hypothesis that the shear strength improvement diminishes linearly with higher load levels during strengthening.</abstract><pub>MDPI AG</pub><doi>10.3390/constrmater4040039</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0429-0853</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2673-7108
ispartof Construction materials, 2024-11, Vol.4 (4), p.721-737
issn 2673-7108
2673-7108
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_b255be1e26f2400797f7961ee1258c75
source DOAJ Directory of Open Access Journals
subjects fiber-reinforced cementitious matrix
FRCM
RC beams
shear strength
strengthening
title Shear Strengthening with a Fiber-Reinforced Cementitious Matrix of Reinforced Concrete Elements Under Different Levels of Loads: An Experimental Investigation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A11%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shear%20Strengthening%20with%20a%20Fiber-Reinforced%20Cementitious%20Matrix%20of%20Reinforced%20Concrete%20Elements%20Under%20Different%20Levels%20of%20Loads:%20An%20Experimental%20Investigation&rft.jtitle=Construction%20materials&rft.au=Vegera,%20Pavlo&rft.date=2024-11-22&rft.volume=4&rft.issue=4&rft.spage=721&rft.epage=737&rft.pages=721-737&rft.issn=2673-7108&rft.eissn=2673-7108&rft_id=info:doi/10.3390/constrmater4040039&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_b255be1e26f2400797f7961ee1258c75%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1095-49142d152eea68ff91113b56b0469f1e1bc639f90648d99d1d7b16b3ff063f2c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true